

This report will not be used for social proof function in China market.

	Test report No:
	6076844.50
TEST REPORT	
Electromagnetic Co	mpatibility (EMC)
Identification of item tested	Disk-type Sander (Concrete Grinder)
Trademark	AGP
Model and /or type reference	SM5; G125; CG5; HG5; HG125; CG125; VG5; VG125; CGR125; G5; BS-1255; 2530-442200; SMD CGR125-220 SM7; CG7; CG180; G180; G7; HG7; HG180; VG7; VG180; CGR180; BS-1805; SMD CGR180-220
Ratings	SM5; G125; CG5; HG5; HG125; CG125; VG5; VG125; CGR125; G5; BS-1255; 2530-442200; SMD CGR125-220: 220-240 V; 50-60 Hz; 2200 W; n: 4500-9500 /min; Ø125 mm; Class II 110-120 V; 50-60 Hz; 1700 W; n: 4500-9500 /min; Ø125 mm; Class II
	SM7; CG7; CG180; G180; G7; HG7; HG180; VG7; VG180; CGR180; BS-1805; SMD CGR180-220: 220-240 V; 50-60 Hz; 2200 W; n: 3200-6500 /min; Ø180 mm; Class II 110-120 V; 50-60 Hz; 1700 W; n: 3200-6500 /min; Ø180 mm; Class II
Test Laboratory / address	DEKRA Testing and Certification (Shanghai) Ltd.
Applicant / address	LEE YEONG INDUSTRIAL CO., LTD. No.2, Kejia Rd., Douliu City, Yunlin County 64057, Taiwan
Test method requested, standard	EN 55014-1:2017; EN 55014-2:2015; EN 61000-3-2:2014; EN 61000-3-3:2013
Verdict Summary	IN COMPLIANCE
Tested by	Kaiyuan Dai (Project Engineer) Kaiyuan. Dai

Approved by	Zuyao Fan (Project Manager) Zurgaw. Fan
Date of issue	2020-04-24
Report template No	TRF_EN55014-1_EN55014-2_EMC02 V1.0

INDEX

		p	age
Com	petenc	ces and Guarantees	5
Gene	eral co	nditions	5
Unce	ertainty	/	6
Envi	ronmei	ntal conditions	6
Poss	ible te	st case verdicts	7
Defir	nition o	f symbols used in this test report	7
Abbr	eviatio	ns	7
Docι	ument	History	8
Rem	arks a	nd Comments	8
1	Gene	ral Information	9
	1.1	General Description of the Item(s)	9
	1.2	Environment	. 11
	1.3	Test Location	. 11
	1.4	Classification according to EN 55014-2	. 12
2	Desci	ription of Test Setup	. 13
	2.1	Operating mode(s) used for tests	. 13
	2.2	Port(s) of the EUT	. 13
	2.3	Support / Auxiliary equipment / unit / software for the EUT	. 13
	2.4	Test Configuration / Block diagram used for tests	. 14
3	Verdi	ct summary section	. 15
	3.1	Standards	. 15
	3.2	Deviation(s) from the Standard(s) / Test Specification(s)	. 15
	3.3	Overview of results	. 16
4	Emiss	sion Test Results	. 17
	4.1	Conducted disturbance voltage – Mains	. 17
	4.2	Conducted disturbance voltage- Load terminals	. 22
	4.3	Conducted disturbance voltage- Additional terminals	. 23
	4.4	Disturbance power (30 MHz – 300 MHz)	. 24
	4.5	Radiated electromagnetic disturbances (30 – 1000 MHz)	. 27
	4.6	Discontinuous disturbance (clicks) on AC power leads	. 28
	4.7	Harmonic current emissions	. 29
	4.8	Voltage changes, voltage fluctuations and flicker	. 32
5	Immu	inity Test Results	. 34
	5.1	Performance (Compliance) criteria	. 34

DEKRA

	5.1.1 Performance criteria related to immunity tests	34
	5.1.2 Manufacturer defined performance criteria	34
5.2	Monitored – Checked Functions / Parameters	35
5.3	Electrostatic discharge immunity	36
5.4	Radio-frequency electromagnetic fields immunity	37
5.5	Electrical Fast Transients immunity	38
5.6	Surge transient immunity	39
5.7	Injected currents (RF common mode) immunity	40
5.8	Power supply interruptions and dips immunity	41
Identi	fication of the Equipment Under Test	42
Meas	urement Uncertainties	43
Used	Equipment	44
Test I	Photos	46

COMPETENCES AND GUARANTEES

DEKRA is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA has a calibration and maintenance program for its measurement equipment.

DEKRA guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated in the report and it is based on the knowledge and technical facilities available at DEKRA at the time of performance of the test.

DEKRA is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA.

GENERAL CONDITIONS

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or Competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA.
- 5. The information provided by the customer in this report may affect the validity of the results, the test lab is not responsible for it.
- 6. The test results presented in this report relate only to the object tested.

UNCERTAINTY

For all measurements where guidance for the calculation of the instrumentation uncertainty of a measurement is specified in EN 55016-4-2 (CISPR 16-4-2), EN/IEC 61000-4 series or a product standard, the measurement instrumentation uncertainty has been calculated and applied in accordance with these standards.

Uncertainties have been calculated according to the DEKRA internal document. The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

ENVIRONMENTAL CONDITIONS

The climatic conditions during the tests are within the limits specified by the manufacturer for the operation of the EUT and the test equipment. The climatic conditions during the tests were within the following limits:

Ambient temperature	15 °C – 35 °C
Relative Humidity air	30% - 60%
Atmospheric pressure	86 kPa – 106 kPa

If explicitly required in the basic standard or applied product / product family standard the climatic values are recorded and documented separately in this test report.

POSSIBLE TEST CASE VERDICTS

Test case does not apply to test object	N/A
Test object does meet requirement	P (Pass) / PASS
Test object does not meet requirement	F (Fail) / FAIL
Not measured	N/M

DEFINITION OF SYMBOLS USED IN THIS TEST REPORT

Indicates that the listed condition, standard or equipment is applicable for this report/test/EUT.			
□ Indicates that the listed condition, standard or equipment is not applicable for this report/test/EUT.			
Decimal separator used in this report 🛛 Comma (,) 🗌 Point (.)		Point (.)	

ABBREVIATIONS

For the purposes of the present document, the following abbreviations apply:

- EUT : Equipment Under Test
- QP : Quasi-Peak CAV : CISPR Average AV : Average CDN : Coupling Decoupling Network SAC : Semi-Anechoic Chamber OATS : Open Area Test Site BW : Bandwidth AM : Amplitude Modulation ΡM : Pulse Modulation : Horizontal Coupling Plane HCP VCP : Vertical Coupling Plane
- $U_{\rm N}$: Nominal voltage

DOCUMENT HISTORY

Report nr.	Date	Description
6076844.50	2020-04-24	First release

The report is issued to base on original test report Ref. No. 6009318.50 dated on

2017-05-18 including the following modifications:

- Add new models

SM5; G125; CG5; HG5; HG125; CG125; VG5; VG125; CGR125; G5; BS-1255; 2530-442200; SMD CGR125-220 are same except the models' name. SM7; CG7; CG180; G180; G7; HG7; HG180; VG7; VG180; CGR180; BS-1805; SMD CGR180-220 are same except the models' name. After review, no test was considered necessary.

REMARKS AND COMMENTS

The equipment under test (EUT) does meet the requirements of the stated standard(s)/test(s).

The test results relate only to the samples tested.

According to the declaration from manufacturer, SM5 and SM7 share the same construction and components, only the speed reducing gear and capacity of sanding head of them are different.

Therefore, model SM5 was selected for the full test and the result is also representative for all models as well.

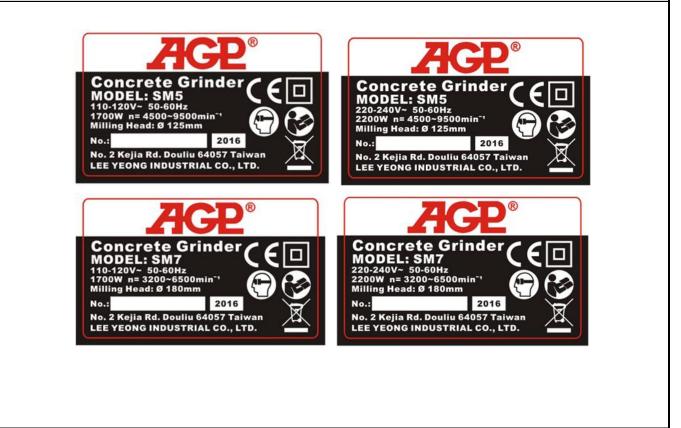
1 GENERAL INFORMATION

1.1 General Description of the Item(s)

Description of the item:	Disk-type Sander (Concrete Grinder)
Model / Type number:	SM5
Representative Types	G125; CG5; HG5; HG125; CG125; VG5; VG125; CGR125; G5; BS-1255;
	2530-442200; SMD CGR125-220
	SM7; CG7; CG180; G180; G7; HG7; HG180; VG7; VG180; CGR180; BS-
	1805; SMD CGR180-220
Trademark	AGP
Manufacturer	LEE YEONG INDUSTRIAL CO., LTD.
	No.2, Kejia Rd., Douliu City, Yunlin County 64057, Taiwan
Factory	LEE YEONG INDUSTRIAL CO., LTD.
	No.2, Kejia Rd., Douliu City, Yunlin County 64057, Taiwan

	TANE OVAL ADDE HOUSE ADVAL VALUE ADDAGE OF DO			
Rated Power	SM5; G125; CG5; HG5; HG125; CG125; VG5; VG125; CGR125; G5; BS-			
	1255; 2530-442200; SMD CGR125-220:			
	220-240 V; 50-60 Hz; 2200 W; n: 4500-9500 /min; Ø125 mm; Class II			
	110-120 V; 50-60 Hz; 1700 W; n: 4500-9500 /min; Ø125 mm; Class II			
	SM7; CG7; CG180; G180; G7; HG7; HG180; VG7; VG180;			
	CGR180; BS-1805; SMD CGR180-220:			
	220-240 V; 50-60 Hz; 2200 W; n: 3200-6500 /min; Ø180 mm; Class II			
	110-120 V; 50-60 Hz; 1700 W; n: 3200-6500 /min; Ø180 mm; Class II			
Clock frequencies:	Not provided			
Other parameters:	N/A			
Mounting position:	Table top equipment			
	Wall/Ceiling mounted equipment			
	Floor standing equipment			
	Hand-held equipment			
	Other:			

Intended use of the Equipment Under Test (EUT)


This tool is intended for sanding surface of stone materials without the use of water.

No	Module/parts of test item	Туре	Manufacturer
	N/A		
No	Documents as provided by the applicant – Description	File name	Issue date

N/A

Copy of marking plate:

1.2 Environment

The requirements and standards apply to equipment intended for use in:

\square	Residential (domestic) environment.
\square	Commercial and light-industrial environment.
	Industrial environment.

1.3 Test Location

Location	DEKRA Testing and Certification (Shanghai) Ltd.
Address	No.250, Jiangchangsan Road, Jing'an District, Shanghai, China
Date	Apr. 2015 (Samples provided by applicant)
Supervised by	Zuyao Fan

1.4 **Classification according to EN 55014-2**

The standard EN 55014-2 is subdivided in four categories. For each category, specific immunity requirements are formulated.

	Category I: Apparatus containing no electronic control circuitry.
	Examples: Motor operated appliances, lighting toys, track sets without electronic control units, tools, heating appliances, UV and IR radiators and apparatus containing components such as electromechanical switches and thermostats.
	Electric circuits consisting of passive components (such as radio interference suppression capacitors or inductors, mains transformers and mains frequency rectifiers) are not considered to be electronic control circuitry.
	<u>Category II:</u> Transformer toys, dual supply toys, mains powered motor operated appliances, tools, heating appliances and similar electric apparatus (for example – UV radiators, IR radiators and microwave ovens) containing electronic control circuitry with no internal clock frequency or oscillator frequency higher than 15 MHz.
	<u>Category III</u> : Battery powered apparatus (with built-in batteries or external batteries), which in normal use is not connected to the mains, containing an electronic control circuitry with no internal clock frequency or oscillator frequency higher than 15 MHz.
	Category IV: All other apparatus covered by the scope of the EN 55014-2 standard.
-	equency: Fundamental frequency of any signal used in the device, excluding those which are solely de integrated circuits (IC).

2 DESCRIPTION OF TEST SETUP

2.1 **Operating mode(s) used for tests**

During the tests the following operating mode(s) has(have) been used.

Operating mode	Operating mode description	Used for testing			
mode	node Operating mode description		Immunity		
1	Normal operation	\boxtimes	\boxtimes		
2					
3					
4					
5					
6					
Supplemen	Supplemental information:				

2.2 Port(s) of the EUT

	Connected to /	Cable			
Port name and description	Termination	Length used	Attached	Shielded	
	remination	during test [m]	during test	Shielded	
N/A					
Supplemental information:					

2.3 Support / Auxiliary equipment / unit / software for the EUT

The EUT has been tested with the following auxiliary equipment / unit / software:

Type / Version	Manufacturer	Supplied by
	Type / Version	Type / Version Manufacturer

2.4 **Test Configuration / Block diagram used for tests**

Test Con	Fest Configuration / Block diagram			
	Cable A	7		
		EUT		
Cable Ty	1		Signal cable Description)
A	Mains Cable		Non-Shielded, 1 m, 2 pin	

3 VERDICT SUMMARY SECTION

This chapter presents an overview of standards and results. Refer to the next chapters for details of measured test results and applied test levels.

3.1 Standards

Standard	Year	Description
EN 55014-1	2017 ¹⁾	Requirements for household appliances, electric tools and similar apparatus – Part 1: Emission.
EN 55016-2-1	2014	Methods of measurement of disturbances and immunity – Conducted disturbance measurements.
EN 55016-2-2	2010	Methods of measurement of disturbances and immunity – Measurement of disturbance power.
EN 55016-2-3	2010	Methods of measurement of disturbances and immunity - Radiated disturbance
+A1	2010	measurements.
+A2	2014	
EN 61000-3-2	2014	Limits for harmonic current emissions (equipment input current \leq 16 A per
		phase).
EN 61000-3-3	2013	Limitation of voltage fluctuations and flicker
EN 55014-2	2015 ¹⁾	Requirements for household appliances, electric tools and similar apparatus -
		Part 2: Immunity – Product family standard.
EN 61000-4-2	2009	Electrostatic discharge immunity test.
EN 61000-4-3	2006	Radiated, radio-frequency, electromagnetic field immunity test.
+A1	2008	
+A2	2010	
EN 61000-4-4	2012	Electrical fast transient/burst immunity test.
EN 61000-4-5	2014	Surge immunity test.
EN 61000-4-6	2014	Immunity to conducted disturbances, induced by radio-frequency fields.
EN 61000-4-11	2004	Voltage dips, short interruptions and voltage variations immunity tests.

50) Not harmonized yet.

3.2 Deviation(s) from the Standard(s) / Test Specification(s)

No deviation.

3.3 **Overview of results**

EMISSION TESTS – EN 55014-1				
Requirement – Test case	Basic standard(s)	Verdict	Remark	
Conducted disturbance voltage at mains terminals (150 KHz – 30 MHz)	EN 55016-2-1	PASS		
Conducted disturbance voltage at load terminals (150 KHz – 30 MHz)	EN 55016-2-1	N/A		
Conducted disturbance voltage at additional terminals (150 KHz – 30 MHz)	EN 55016-2-1	N/A		
Disturbance power (30 MHz to 300 MHz)	EN 55016-2-2	PASS	See 2)	
Radiated electromagnetic disturbances (30 – 1000 MHz)	EN 55016-2-3	N/A		
Discontinuous disturbance (clicks) on AC power leads	EN 55014-1	N/A	See 1)	
Supplementary information:	•	·		

1) Exemptions from click measurements applicable (clause 4.2.3).

2) According to clause 4.1.2.3.2 procedure (a) of the EN 55014-1 standard the EUT is deemed to comply in the frequency range from 300 MHz to 1000 MHz without further measurements.

EMISSION TESTS – EN 61000-3-2, EN 61000-3-3					
Requirement – Test case Basic standard(s) Verdict Remark					
Harmonic current emissions	EN 61000-3-2	PASS			
Voltage changes, voltage fluctuations and flicker	EN 61000-3-3	PASS			
Supplementary information:					

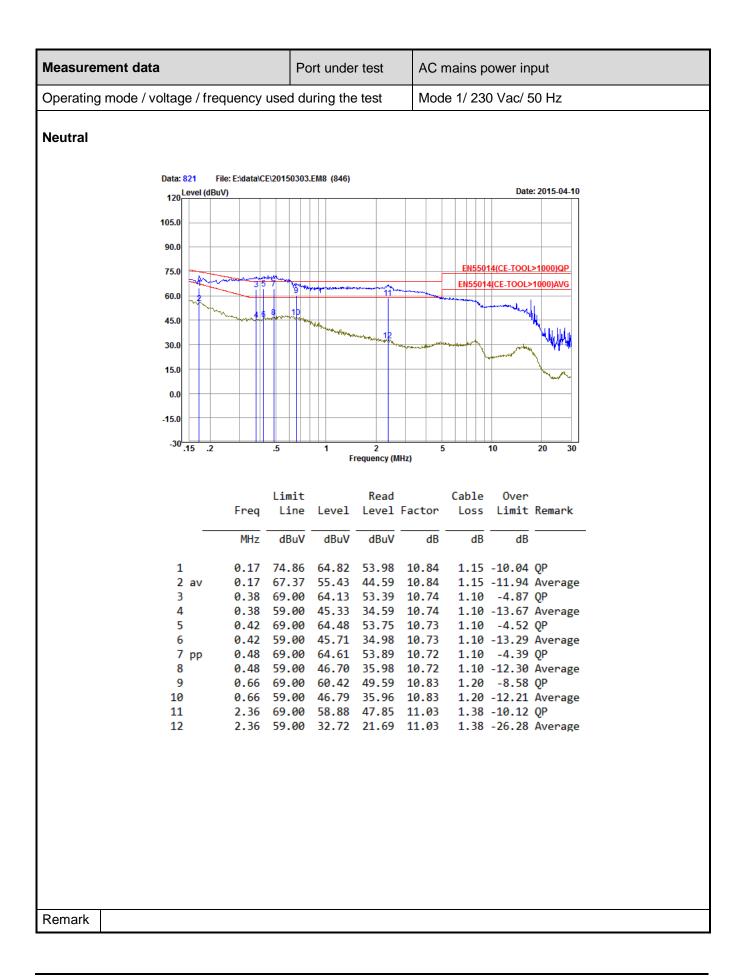
IMMUNITY TESTS – EN 55014-2					
Requirement – Test case Basic standard(s) Verdict Remark					
Electrostatic discharge	EN 61000-4-2	PASS			
Radio-frequency electromagnetic fields	EN 61000-4-3	N/A			
Fast transients	EN 61000-4-4	PASS			
Surge transient	EN 61000-4-5	PASS			
Injected currents (radio-frequency common mode)	EN 61000-4-6	PASS			
Voltage dips and short interruptions EN 61000-4-11 PASS					
Supplementary information:					
1) The equipment is classified as category 1 equipment according to EN 55014-2; no immunity tests are applicable.					

4 EMISSION TEST RESULTS

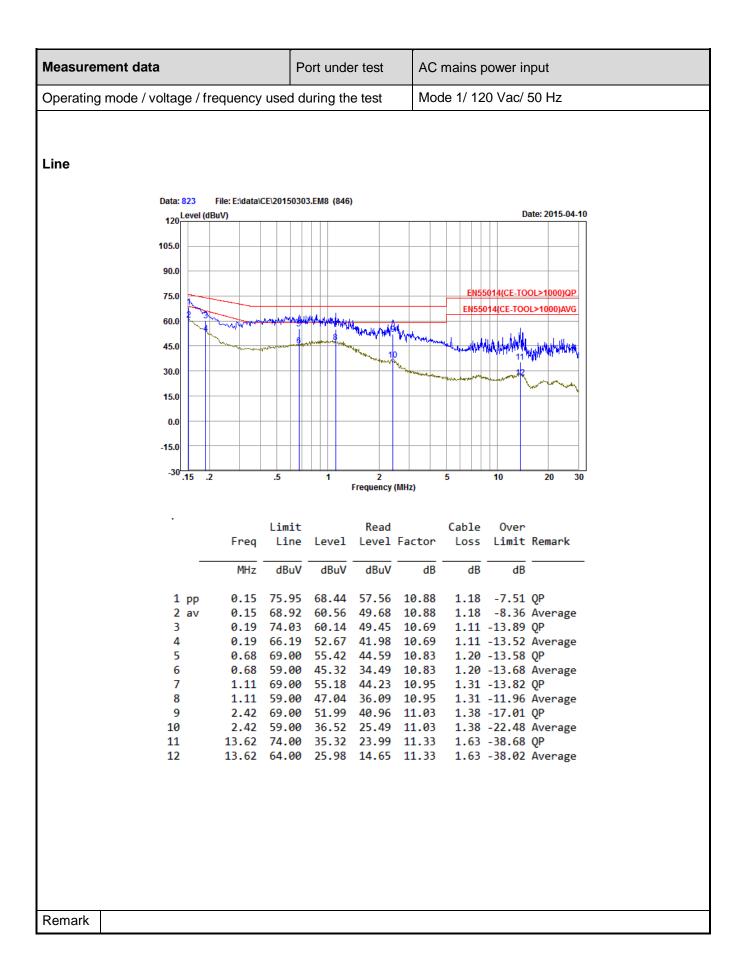
4.1 Conducted disturbance voltage – Mains VERDICT: PASS

Standard	EN 55014-1
Basic standard	EN 55016-2-1

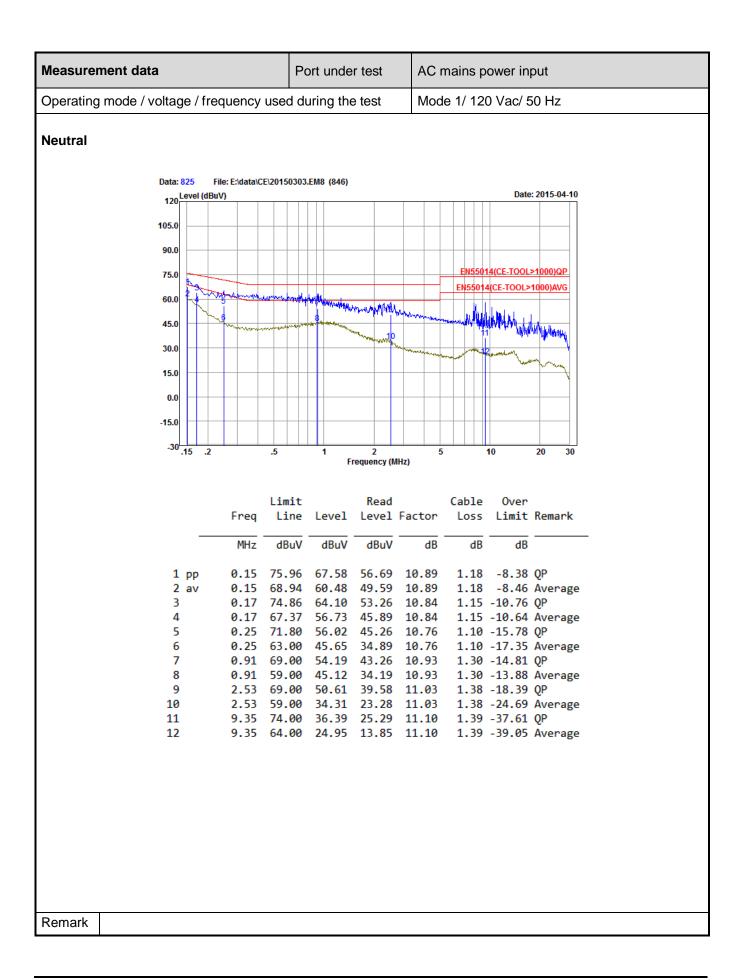
Limits – Tools


Frequency range [MHz]	Limit: QP [dB(μ V) ¹]	Limit: AV [dB(μ V) ¹]	IF BW	Detector(s)		
0,15 - 0,35	66 – 56 ²⁾	59 - 46 ²⁾	9 KHz	QP, CAV		
0,35 - 5,0	56	46	9 KHz	QP, CAV		
5,0 - 30	60	50	9 KHz	QP, CAV		
 ¹⁾ At the transition frequency, the lower limit applies. ²⁾ The limit decreases linearly with the logarithm of the frequency. 						
Rated power below 700 W Limits as above						
Rated power between 700 and 1000 W Limits +4 dB						
Rated power above 10	Rated power above 1000 W					

Scan range (0,9 – 1,1 <i>U</i> _N)		198 – 264 V _{AC}		207 – 253 V _{AC}		230/120 V _{AC}
Tested terminal(s) / port	\square	AC mains input power	\boxtimes	N 🛛 L1		L2 🗌 L3
		DC mains input power		Positive (+)		Negative (-)
Voltage – Mains [V]	230/1	20 Vac				
Frequency – Mains [Hz]	50 H	2				
Test method applied		Artificial mains network				
		Voltage probe				
Test setup	\square	Table top	\boxtimes	Artificial hand ap	olied	
		Floor standing		Other:		
	Refe	r to the Annex 3 for test se	tup ph	noto(s).		
Operating mode(s) used	Mode	e 1				
Remark						



Operating mode / voltage / frequency used during the test Mode 1/230 Vac/ 50 Hz Line Detr: 813 File: Edata/CE/00150303.EMB (846) Detr: 2015.04.10 1000 1000 0	Measurement data	Por	t under tes	t	ACı	mains p	ower in	nput
$ \begin{array}{c} \text{Dir. 815} & \text{Firs: ExtraCE2D15D3D.EMB (846)} \\ \end{array} \\ \hline \\ \begin{array}{c} \text{Dir. 816} & Dir. 816 (1000 - 1000 + 1000 - 1000 + 1000 - 1000 + 1000 - 1000 + 1000 - 1000 + 1000 + 1000 - 1000 + 10000 + 100000 + 100000 + 100000 + 100000 + 100000 + 100000 + 1000000 + 10000 + 100000 + 100000 + 100000 + 100000 + 1000000 + $	Operating mode / voltage / frequence	cy used dur	ing the test	t	Mod	de 1/ 23	0 Vac/	50 Hz
$ \begin{array}{c} \text{Diff: 12} Fit: $2:charCE2015030.EHR (8:4) \\ \\ \hline $								
$ \begin{array}{c} \text{Diff: 15} & \text{Fit: $2000CEUD 5000.EEW (940) } \\ \hline \\ \end{tabular} $	1 have							
$\frac{10}{1060} + \frac{10}{1060} + $	Line							
$\frac{105.0}{50} = \frac{1000}{50} =$		ta\CE\20150303.E	M8 (846)				D	ato: 2015 04 10
$ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$								ate. 2015-04-10
$I = \frac{1}{1} $	105.0							
$\frac{1}{100} = \frac{1}{100} + \frac{1}$	90.0							
$ \frac{600}{450} \frac{1}{900} \frac$	75.0 JAM							
$\frac{43.3}{300} = \frac{43.3}{100} = 43$	60.0 60.0	mannali		ka		ENDOU	14(CE-100	
$ \begin{array}{c} 15.0 \\ 0.0 \\ 0.15.0 \\ 0.0 \\ 0.15.0 \\ 0.0 \\ 0.15.0 \\ 0.0 \\ 0.15.0 \\ $	45.0		harden and a second second	V49	man and a second	www.eduselly	whatachill	
$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	30.0		a state and a state of the stat	10.				
$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	15.0			often Montalian	manhader	wand water 1	- and and and a star of the	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Frequency (MHz) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Freq Line Level Level Factor Loss Limit Remark MHz dBuV dBuV dBuV dBuV dB dB dB dB 1 pp 0.15 75.74 67.97 57.12 10.85 1.17 -7.77 QP 2 av 0.15 68.62 57.70 46.85 10.85 1.17 -10.92 Average 3 0.17 75.08 66.65 55.86 10.79 1.15 -8.43 QP 4 0.17 67.69 56.26 45.47 10.79 1.15 -11.43 Average 5 0.18 74.64 65.74 54.98 10.76 1.14 -8.90 QP 6 0.18 67.06 55.35 44.59 10.76 1.14 -11.71 Average 7 0.20 73.46 62.55 51.89 10.66 1.10 -10.91 QP 8 0.20 65.37 52.53 41.87 10.66 1.10 -12.84 Average 9 <td< td=""><td>-30-15 .2</td><td>.5</td><td></td><td></td><td></td><td>5</td><td>10</td><td>20 30</td></td<>	-30-15 .2	.5				5	10	20 30
Freq Line Level Level Factor Loss Limit Remark MHz dBuV dBuV dBuV dBuV dB dB dB dB 1 pp 0.15 75.74 67.97 57.12 10.85 1.17 -7.77 QP 2 av 0.15 68.62 57.70 46.85 10.85 1.17 -10.92 Average 3 0.17 75.08 66.65 55.86 10.79 1.15 -8.43 QP 4 0.17 67.69 56.26 45.47 10.79 1.15 -11.43 Average 5 0.18 74.64 65.74 54.98 10.76 1.14 -8.90 QP 6 0.18 67.06 55.35 44.59 10.76 1.14 -11.71 Average 7 0.20 73.46 62.55 51.89 10.66 1.10 -10.91 QP 8 0.20 65.37 52.53 41.87 10.66 1.10 -12.84 Average 9 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
MHz dBuV dBuV dBuV dB dB dB 1 pp 0.15 75.74 67.97 57.12 10.85 1.17 -7.77 QP 2 av 0.15 68.62 57.70 46.85 10.85 1.17 -10.92 Average 3 0.17 75.08 66.65 55.86 10.79 1.15 -8.43 QP 4 0.17 67.69 56.26 45.47 10.79 1.15 -11.43 Average 5 0.18 74.64 65.74 54.98 10.76 1.14 -8.90 QP 6 0.18 67.06 55.35 44.59 10.76 1.14 -11.71 Average 7 0.20 73.46 62.55 51.89 10.66 1.10 -10.91 QP 8 0.20 65.37 52.53 41.87 10.66 1.10 -12.84 Average 9 2.40 69.00 46.22 35.19 11.03 1.38 -22.78 QP 10 2.40 59								D
1 pp0.1575.7467.9757.1210.851.17-7.77 QP2 av0.1568.6257.7046.8510.851.17-10.92 Average30.1775.0866.6555.8610.791.15-8.43 QP40.1767.6956.2645.4710.791.15-11.43 Average50.1874.6465.7454.9810.761.14-8.90 QP60.1867.0655.3544.5910.761.14-11.71 Average70.2073.4662.5551.8910.661.10-10.91 QP80.2065.3752.5341.8710.661.10-12.84 Average92.4069.0046.2235.1911.031.38-22.78 QP102.4059.0024.9213.8911.031.38-34.08 Average1118.2374.0044.1632.5911.571.84-29.84 QP	Freq	Line L	evel Leve	el Fac	tor	Loss	Limit	Kemark
2 av 0.15 68.62 57.70 46.85 10.85 1.17 -10.92 Average 3 0.17 75.08 66.65 55.86 10.79 1.15 -8.43 QP 4 0.17 67.69 56.26 45.47 10.79 1.15 -11.43 Average 5 0.18 74.64 65.74 54.98 10.76 1.14 -8.90 QP 6 0.18 67.06 55.35 44.59 10.76 1.14 -11.71 Average 7 0.20 73.46 62.55 51.89 10.66 1.10 -10.91 QP 8 0.20 65.37 52.53 41.87 10.66 1.10 -12.84 Average 9 2.40 69.00 46.22 35.19 11.03 1.38 -22.78 QP 10 2.40 59.00 24.92 13.89 11.03 1.38 -34.08 Average 11 18.23 74.00 44.16 32.59 11.57 1.84 -29.84 QP	MHz	dBuV	dBuV dBu	V	dB	dB	dB	
3 0.17 75.08 66.65 55.86 10.79 1.15 -8.43 QP 4 0.17 67.69 56.26 45.47 10.79 1.15 -11.43 Average 5 0.18 74.64 65.74 54.98 10.76 1.14 -8.90 QP 6 0.18 67.06 55.35 44.59 10.76 1.14 -11.71 Average 7 0.20 73.46 62.55 51.89 10.66 1.10 -10.91 QP 8 0.20 65.37 52.53 41.87 10.66 1.10 -12.84 Average 9 2.40 69.00 46.22 35.19 11.03 1.38 -22.78 QP 10 2.40 59.00 24.92 13.89 11.03 1.38 -34.08 Average 11 18.23 74.00 44.16 32.59 11.57 1.84 -29.84 QP								
4 0.17 67.69 56.26 45.47 10.79 1.15 -11.43 Average 5 0.18 74.64 65.74 54.98 10.76 1.14 -8.90 QP 6 0.18 67.06 55.35 44.59 10.76 1.14 -11.71 Average 7 0.20 73.46 62.55 51.89 10.66 1.10 -10.91 QP 8 0.20 65.37 52.53 41.87 10.66 1.10 -12.84 Average 9 2.40 69.00 46.22 35.19 11.03 1.38 -22.78 QP 10 2.40 59.00 24.92 13.89 11.03 1.38 -34.08 Average 11 18.23 74.00 44.16 32.59 11.57 1.84 -29.84 QP								
6 0.18 67.06 55.35 44.59 10.76 1.14 -11.71 Average 7 0.20 73.46 62.55 51.89 10.66 1.10 -10.91 QP 8 0.20 65.37 52.53 41.87 10.66 1.10 -12.84 Average 9 2.40 69.00 46.22 35.19 11.03 1.38 -22.78 QP 10 2.40 59.00 24.92 13.89 11.03 1.38 -34.08 Average 11 18.23 74.00 44.16 32.59 11.57 1.84 -29.84 QP								
7 0.20 73.46 62.55 51.89 10.66 1.10 -10.91 QP 8 0.20 65.37 52.53 41.87 10.66 1.10 -12.84 Average 9 2.40 69.00 46.22 35.19 11.03 1.38 -22.78 QP 10 2.40 59.00 24.92 13.89 11.03 1.38 -34.08 Average 11 18.23 74.00 44.16 32.59 11.57 1.84 -29.84 QP								
8 0.20 65.37 52.53 41.87 10.66 1.10 -12.84 Average 9 2.40 69.00 46.22 35.19 11.03 1.38 -22.78 QP 10 2.40 59.00 24.92 13.89 11.03 1.38 -34.08 Average 11 18.23 74.00 44.16 32.59 11.57 1.84 -29.84 QP								
102.4059.0024.9213.8911.031.38-34.08Average1118.2374.0044.1632.5911.571.84-29.84QP	8 0.20	65.37 5	2.53 41.8	87 10	.66	1.10	-12.84	Average
11 18.23 74.00 44.16 32.59 11.57 1.84 -29.84 QP								
								-
	Remark							



4.2 Conducted disturbance voltage– Load terminals VERDICT: N/A

Standard	EN 55014-1
Basic standard	EN 55016-2-1

Limits

Frequency range [MHz]	Limit: QP [dB(μ V) ^{1]}]	Limit: AV [dB(μ V) ¹]	IF BW	Detector(s)
0,15 - 0,50	80	70	9 KHz	QP, CAV
5,0 - 30	74	64	9 KHz	QP, CAV
¹⁾ At the transition frequency, the lower	r limit applies.			

Port(s) / Terminal(s) under tes	ŧ			
⊟	(please write the name of	of the p	ort under test)		Other:
	Other:				Other:
Volta	age Mains [V]	(Plea	se write the voltage/	oltage	s used for testing)
Freq	uency – Mains [Hz]	(Plea	se write the frequenc	y/freq u	encies used for testing)
Test	method applied		Voltage probe		
			ISN – Impedance S	tabilisa	tion Network
		₽	CDN according to E	N/IE	2 61000-4-6
			Current probe		
		⊟	Artificial mains netw	ork	
Test	setup		Table top	Ф	Artificial hand applied
			Floor standing	□	Other:
		Refe	r to the Annex 3 for to	est setu	ip photo(s).
Oper	ating mode(s) used	Pleas	se write the operating	mode	(s) used during testing
Rem					· ·

4.3 Conducted disturbance voltage– Additional terminals VERDICT: N/A

Standard	EN 55014-1
Basic standard	EN 55016-2-1

Limits

Frequency range [MHz]	Limit: QP [dB(μ V) ^{1]}]	Limit: AV [dB(μ V) ¹]	IF BW	Detector(s)
0,15 - 0,50	80	70	9 KHz	QP, CAV
5,0 - 30	74	64	9 KHz	QP, CAV
¹⁾ At the transition frequency, the lower	limit applies.			

Port(s) / Terminal(s) under tes	ŧ			
	(please write the name of	of the p	ort under test)		Other:
₽	Other:				Other:
Volta	age Mains [V]	(Plea	se write the voltage/v	oltage	s used for testing)
	uency – Mains [Hz]				uencies used for testing)
		F	ſ		
Test	method applied		CDN according to E	N / IE(C 61000-4-6
			ISN – Impedance S	tabilisa	ation Network
		₽	Voltage probe		
			Current probe		
			Artificial mains netw	ork	
			Other:		
Test	setup		Table top		Artificial hand applied
			Floor standing		Other:
		Refe	to the Annex 3 for te	est setu	ip photo(s).
Oper	ating mode(s) used	Pleas	e write the operating	mode	(s) used during testing
Rem	ark				

PASS

4.4 Disturbance power (30 MHz – 300 MHz) VERDICT:

Standard	EN 55014-1
Basic standard	EN 55016-2-2

Limits – Tools

Freque	ency rang	ge [MHz]	Limit: QP	' [dB((pW)]	Limit: A	/ [dB	(pW)]	IF BW	Detector(s)
	30 -	300	45	-	55 ¹⁾	35	_	45 ¹⁾	120 KHz	QP, CAV
					Margin					
	200 -	300	0	_	10 ¹⁾				120 KHz	QP, CAV
¹⁾ The lin	mit increas	es linearly with the f	requency.							
	Rated p	power below 700) W						Limits as abo	ve
	Rated p	oower between [·]	700 and 10	000 V	V				Limits +4 dB	
\square	Rated p	oower above 10	00 W						Limits +10 dE	3

Port(s) under test									
\square	AC mains input power			Load				Contr	ol	
	Other:			Other:				Other	r:	
		1			I	1			1	
Scan	range (0,9 – 1,1 <i>U</i> _N)		198 -	- 264 V _{AC}		207 –	253 ∖	/ _{AC}	\boxtimes	230/120 V _{AC}
Volta	ge – Mains [V]	230/1	20 Va	с						
Freq	uency – Mains [Hz]	50 Hz	z							
		r			1	1				
Test	setup	\square	Table	e top		Floor	standi	ng		
			Othe	r:						
		Refe	r to the	Annex 3 for test se	tup ph	oto(s).				
	litions for exemption	\square	"Limi	ts" reduced by "Mar	gin" ap	plied a	and pa	ssed		
300 I	measurements above //Hz		Maxi	mum clock frequenc	cy < 30	MHz				
Oper	ating mode(s) used	Mode	e 1							
Rem	ark									

Deperating mode / voltage / frequency used during the test Mode 1/ 230 Vac/ 50 Hz $Ditt: 95 Fit: Extend DP20140628EM8 (604)$ $Ditt: 95 Fit: 2015 04.10$ $Extend 100 000 000 000 000 000 000 000 000 00$	Measurement data		Po	ort unde	er test	AC	mains p	ower in	put	
$\frac{100}{105.0} = \frac{100}{105.0} = \frac{100}{105.0$	Operating mode / voltage	/frequency	used du	uring th	e test	Mo	de 1/ 23	0 Vac/ 5	50 Hz	
$\frac{100}{105.0} = \frac{100}{105.0} = \frac{100}{105.0$										
$\frac{105.0}{90.0} + \frac{1}{90.0} +$			P\20140628	3.EM8 (604))					
$ \frac{90.0}{76.0} \frac{1}{90.0} \frac{1}{$	120	vel (dBpW)						Date	e: 2015-04-10	
$\frac{1}{1} \qquad \begin{array}{c} 47.55 \\ 47.57 \\ 47.57 \\ 47.57 \\ 47.55 \\ 47.57$	105.0 -									
$ \frac{60.0}{45.0} + \frac{1}{90} + 1$	90.0									
$ \frac{60.0}{45.0} + \frac{1}{90} + 1$	75.0									
$ \frac{45.0}{100} \frac{1}{9} \frac{1}{9$										
$ \frac{30.0}{16.0} \frac{1}{9} \frac{1}{$	60.0						EN5501	4(DP-TOOL>	1000)AVG	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	45.0	MAN 1 MAN	.M. JA	how all I	ω I.		Jacks at how as	hu ah i	1. 0.	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	30.0		yr ywr	i ni mangan	The appropriate of the		TYR ANN ANN ANN	aller of head a series	many hard for the	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15.0	24 8				10	12			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-15.0									
Frequency (MHz) Limit Read Cable Over Freq Line Level Level Factor Loss Limit Remark MHz dBpW dBpW dBpW dBpW dBpW dB dB dB QP 1 47.55 55.66 33.98 14.27 19.71 0.83 -21.68 QP 2 47.55 45.66 14.01 -5.70 19.71 0.83 -31.65 Average 3 50.52 55.77 29.23 9.60 19.63 1.00 -26.54 QP 4 50.52 45.77 11.23 -8.40 19.63 1.00 -34.54 Average 5 pp 61.86 56.19 40.20 21.57 18.63 1.17 -15.99 QP 6 av 61.86 46.19 19.33 0.70 18.63 1.17 -26.86 Average 7 76.44 56.73 32.53 13.87 18.66 1.29 -33.17 Average 9										
Freq Line Level Level Factor Loss Limit Remark MHz dBpW dBpW dBpW dBpW dB dB dB dB 1 47.55 55.66 33.98 14.27 19.71 0.83 -21.68 QP 2 47.55 45.66 14.01 -5.70 19.71 0.83 -31.65 Average 3 50.52 55.77 29.23 9.60 19.63 1.00 -26.54 QP 4 50.52 45.77 11.23 -8.40 19.63 1.00 -34.54 Average 5 pp 61.86 56.19 40.20 21.57 18.63 1.17 -15.99 QP 6 av 61.86 46.19 19.33 0.70 18.63 1.17 -26.86 Average 7 76.44 56.73 32.53 13.87 18.66 1.29 -24.20 QP 8 76.44 46.73 13.56 -5.10 18.66 1.29 -33.17 Average </td <td>-³⁰ 30</td> <td>40. 60. 80.</td> <td>100.</td> <td></td> <td></td> <td></td> <td>. 220. 24</td> <td>10. 260.</td> <td>280. 300</td> <td></td>	- ³⁰ 30	40. 60. 80.	100.				. 220. 24	10. 260.	280. 300	
Freq Line Level Level Factor Loss Limit Remark MHz dBpW dBpW dBpW dBpW dB dB dB dB 1 47.55 55.66 33.98 14.27 19.71 0.83 -21.68 QP 2 47.55 45.66 14.01 -5.70 19.71 0.83 -31.65 Average 3 50.52 55.77 29.23 9.60 19.63 1.00 -26.54 QP 4 50.52 45.77 11.23 -8.40 19.63 1.00 -34.54 Average 5 pp 61.86 56.19 40.20 21.57 18.63 1.17 -15.99 QP 6 av 61.86 46.19 19.33 0.70 18.63 1.17 -26.86 Average 7 76.44 56.73 32.53 13.87 18.66 1.29 -24.20 QP 8 76.44 46.73 13.56 -5.10 18.66 1.29 -33.17 Average </td <td></td>										
MHz dBpW dBpW dBpW dBpW dB dB dB dB 1 47.55 55.66 33.98 14.27 19.71 0.83 -21.68 QP 2 47.55 45.66 14.01 -5.70 19.71 0.83 -31.65 Average 3 50.52 55.77 29.23 9.60 19.63 1.00 -26.54 QP 4 50.52 45.77 11.23 -8.40 19.63 1.00 -34.54 Average 5 pp 61.86 56.19 40.20 21.57 18.63 1.17 -15.99 QP 6 av 61.86 46.19 19.33 0.70 18.63 1.17 -26.86 Average 7 76.44 56.73 32.53 13.87 18.66 1.29 -24.20 QP 8 76.44 46.73 13.56 -5.10 18.66 1.29 -33.17 Average 9 196.86 61.19 33.61 14.79 18.82 2.22 -27.58 <t< td=""><td></td><td></td><td>Limit</td><td></td><td>Read</td><td></td><td>Cable</td><td>0ver</td><td></td><td></td></t<>			Limit		Read		Cable	0ver		
1 47.55 55.66 33.98 14.27 19.71 0.83 -21.68 QP 2 47.55 45.66 14.01 -5.70 19.71 0.83 -31.65 Average 3 50.52 55.77 29.23 9.60 19.63 1.00 -26.54 QP 4 50.52 45.77 11.23 -8.40 19.63 1.00 -34.54 Average 5 pp 61.86 56.19 40.20 21.57 18.63 1.17 -15.99 QP 6 av 61.86 46.19 19.33 0.70 18.63 1.17 -26.86 Average 7 76.44 56.73 32.53 13.87 18.66 1.29 -24.20 QP 8 76.44 46.73 13.56 -5.10 18.66 1.29 -33.17 Average 9 196.86 61.19 33.61 14.79 18.82 2.22 -27.58 QP 10 196.86 51.19 14.08 -4.74 18.82 2.22 -37.11<		Freq	Line	Level	Level	Factor	Loss	Limit	Remark	
2 47.55 45.66 14.01 -5.70 19.71 0.83 -31.65 Average 3 50.52 55.77 29.23 9.60 19.63 1.00 -26.54 QP 4 50.52 45.77 11.23 -8.40 19.63 1.00 -34.54 Average 5 pp 61.86 56.19 40.20 21.57 18.63 1.17 -15.99 QP 6 av 61.86 46.19 19.33 0.70 18.63 1.17 -26.86 Average 7 76.44 56.73 32.53 13.87 18.66 1.29 -24.20 QP 8 76.44 46.73 13.56 -5.10 18.66 1.29 -33.17 Average 9 196.86 61.19 33.61 14.79 18.82 2.22 -27.58 QP 10 196.86 51.19 14.08 -4.74 18.82 2.22 -37.11 Average 11 213.06 61.79 27.81 9.27 18.54 1.97 -		MHz	dBpW	dBpW	dBpW	dB	dB	dB		
2 47.55 45.66 14.01 -5.70 19.71 0.83 -31.65 Average 3 50.52 55.77 29.23 9.60 19.63 1.00 -26.54 QP 4 50.52 45.77 11.23 -8.40 19.63 1.00 -34.54 Average 5 pp 61.86 56.19 40.20 21.57 18.63 1.17 -15.99 QP 6 av 61.86 46.19 19.33 0.70 18.63 1.17 -26.86 Average 7 76.44 56.73 32.53 13.87 18.66 1.29 -24.20 QP 8 76.44 46.73 13.56 -5.10 18.66 1.29 -33.17 Average 9 196.86 61.19 33.61 14.79 18.82 2.22 -27.58 QP 10 196.86 51.19 14.08 -4.74 18.82 2.22 -37.11 Average 11 213.06 61.79 27.81 9.27 18.54 1.97 -	1	47 55		22 00	14 27	10 71	0.02	21 69	OP	
4 50.52 45.77 11.23 -8.40 19.63 1.00 -34.54 Average 5 pp 61.86 56.19 40.20 21.57 18.63 1.17 -15.99 QP 6 av 61.86 46.19 19.33 0.70 18.63 1.17 -26.86 Average 7 76.44 56.73 32.53 13.87 18.66 1.29 -24.20 QP 8 76.44 46.73 13.56 -5.10 18.66 1.29 -33.17 Average 9 196.86 61.19 33.61 14.79 18.82 2.22 -27.58 QP 10 196.86 51.19 14.08 -4.74 18.82 2.22 -37.11 Average 11 213.06 61.79 27.81 9.27 18.54 1.97 -33.98 QP									-	
5 pp 61.86 56.19 40.20 21.57 18.63 1.17 -15.99 QP 6 av 61.86 46.19 19.33 0.70 18.63 1.17 -26.86 Average 7 76.44 56.73 32.53 13.87 18.66 1.29 -24.20 QP 8 76.44 46.73 13.56 -5.10 18.66 1.29 -33.17 Average 9 196.86 61.19 33.61 14.79 18.82 2.22 -27.58 QP 10 196.86 51.19 14.08 -4.74 18.82 2.22 -37.11 Average 11 213.06 61.79 27.81 9.27 18.54 1.97 -33.98 QP										
6 av61.8646.1919.330.7018.631.17-26.86 Average776.4456.7332.5313.8718.661.29-24.20 QP876.4446.7313.56-5.1018.661.29-33.17 Average9196.8661.1933.6114.7918.822.22-27.58 QP10196.8651.1914.08-4.7418.822.22-37.11 Average11213.0661.7927.819.2718.541.97-33.98 QP									-	
8 76.44 46.73 13.56 -5.10 18.66 1.29 -33.17 Average 9 196.86 61.19 33.61 14.79 18.82 2.22 -27.58 QP 10 196.86 51.19 14.08 -4.74 18.82 2.22 -37.11 Average 11 213.06 61.79 27.81 9.27 18.54 1.97 -33.98 QP		61.86					1.17	-26.86	Average	
9196.8661.1933.6114.7918.822.22-27.58QP10196.8651.1914.08-4.7418.822.22-37.11Average11213.0661.7927.819.2718.541.97-33.98QP										
10 196.86 51.19 14.08 -4.74 18.82 2.22 -37.11 Average 11 213.06 61.79 27.81 9.27 18.54 1.97 -33.98 QP										
	10	196.86	51.19	14.08	-4.74	18.82	2.22	-37.11	Average	
12 213.06 51.79 8.80 -9.74 18.54 1.97 -42.99 Average										
	12	213.06	51.79	8.80	-9.74	18.54	1.97	-42.99	Average	
	Remark									
Zomark	Centalk									

Measurement data					Por	t und	er te	est	A	C ma	ains	powe	r inp	out
Operating mode / voltag	e/f	reque	ency	used	d dui	ring tl	ne te	st	М	ode	1/ 1	20 Va	ac/ 50	0 Hz
Data:	584	File: E	:\data\E)P\2014	40628.E	M8 (604	L)							
120	Level (dBpW)											Date: 2	2015-04-
105.0														
90.0														
75.0														
												014(DP-T		
60.0	-		.Mud								EN550)14(DP-TC	OL>10	00)AVG
45.0	-Yel	1 VMM	I I	1 1	الد ان	Murilynum	MAN BUNK	uh AL		n La An	.	MAN MANYA		
30.0			4 6	-_/#	ANAP .	a Afrikana.		A NING AN	palition ()	artesta	77444	ann ann an	ula-yana	ana ang ang ang ang ang ang ang ang ang
15.0		2		8			-10				12			
0.0														
-15.0														
-30	30 40). 60.	80	. 10	0. 12	20. 14	0. 1	50. ·	180. 20	0. 22	20.	240. 26	50. 2	80. 30
							Frequ	ency (I	VHz)					
				Li	mit		R	ead		Cab	ole	0ver		
			Freq			Level			Factor			Limit	Rema	ark
			MHz	d	BpW -	dBpW	d	BpW	dB		dB	dB		
	1		43.23	55	.50	32.04	11	.98	20.06	0.	.84	-23.46	QP	
	2 3 p					10.97			20.06 18.52	0.	.84	-34.53 -12.64	Aver	age
	4 a	v (58.34	46	.43	21.12	2	.60	18.52	1.	.19	-25.31	Aver	age
	5 6					41.49			18.60 18.60			-15.20 -26.50		age
	7	9	96.96	57	.49	26.66	8	.70	17.96	1.	.40	-30.83	QP	
	8 9	1	50.42	59	.47	33.56	15	.27	18.29	1.	.73	-40.56 -25.91	QP	
	10	1	50.42	49	.47	12.15	-6	.14	18.29	1.	.73	-37.32	Aver	age
<u> </u>														
Remark														

4.5 Radiated electromagnetic disturbances (30 – 1000 MHz) VERDICT: N/A

Standard	EN 55014-1
Basic standard	EN 55016-2-3
Test method	Antenna method according to EN 55016-2-3 standard.

Limits

Frequency	L	IF BW Detecto				
[MHz]	@3 m.	@5 m.	@10 m.	IF BW Delector		
30 - 230	40	36	30	120 KHz	QP	
230 - 1000	47	43	37	120 KHz	QP	
¹⁾ At the transition frequency, the	he lower limit applies.					

Port under test	Enclo	osure					
Voltage Mains [V]	(Plea	se write the voltage/voltages used for testing)					
Frequency – Mains [Hz]	(Plea	se write the frequency/frequencies used for testing)					
Test method applied	\square	OATS or SAC with measurement distance [m]: 3 m.					
		OATS or SAC with measurement distance [m]: 5 m.					
		OATS or SAC with measurement distance [m]: 10 m.					
Test setup	\bowtie	Equipment on a table of 80 cm height					
		Equipment on the floor (insulated from ground plane)					
		Other:					
	Refe	r to the Annex 3 for test setup photo(s).					
	•						
Operating mode(s) used	Operating mode(s) used Please write the operating mode(s) used during testing						
Remark							

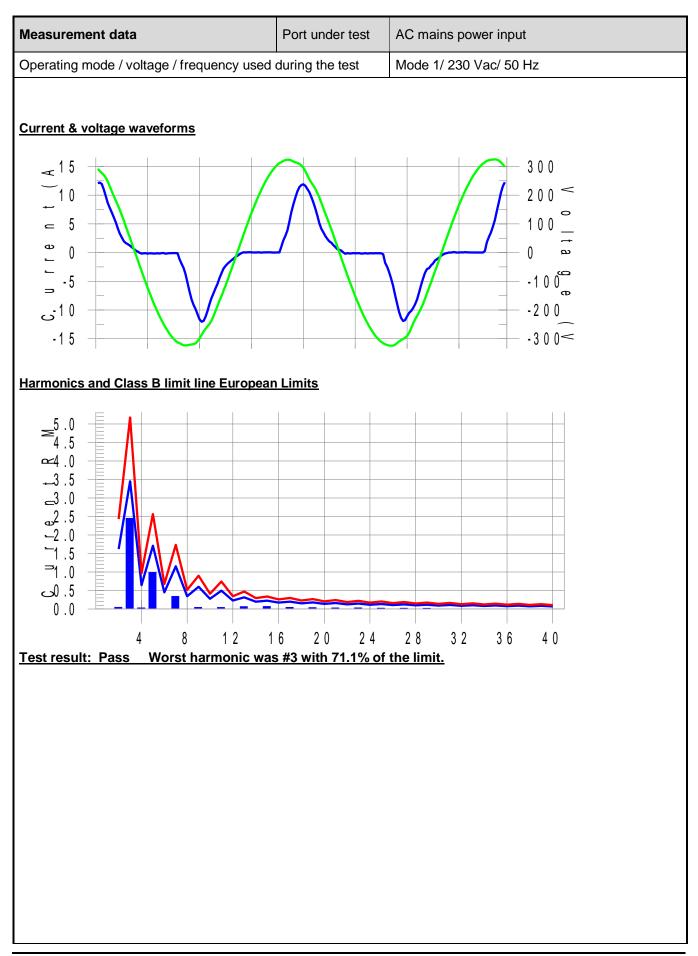
4.6	Discontinuous disturbance	(clicks)	on AC	power leads	VERDICT:	N/A

Standard	EN 55014-1		
Frequency [MHz]	Limit: QP [dB(µV)]	IF BW	Detector
0,15	66	9 KHz	Quasi-Peak (QP)
0,50	56	9 KHz	Quasi-Peak (QP)
1,40	56	9 KHz	Quasi-Peak (QP)
30,0	60	9 KHz	Quasi-Peak (QP)

Scan range (0,9 - 1,1 <i>U</i>_№)	\bowtie	198 – 264 V_{AC}		207 253 V_{AC}							
Voltage – Mains [V]	264 \	264 Vac									
Frequency – Mains [Hz]	50 Hz	i0 Hz									
Test method applied	Ø	Artificial mains network									
		Voltage probe									
Test setup	\boxtimes	Table top		Floor standing							
		Other:									
Operating mode(s) used	Mode	Mode 1									
Remark											

Reason for not performing the test			The amplitudes of the observed disturbances were all below the limit for continuous disturbance, these are not considered to be clicks.										
Measurement results			Neutral			Line 1			Line 2		Line	3	
Fraguanay		First Measurement: Determination of the limit LaQuasi-peak											
Frequency (MHz)	Limit <i>L</i> (dBµV)	Number of short clicks		Number of long clicks		Number of clicks – <i>N</i> 1	Time of meas. (min.)		Click rate N	Increased limit (dB)		Increased Limit L _q	
0,15	66		θ	(Ð	θ		2					
0,5	56		θ	(Ð	θ		2					
1,4	56		θ θ		Ð	θ	2						
30	60		θ €		Ð	θ	2						
₽		10 ms)	. Thus, t	he EU	T is de	e than 5 time: emed to com							
Fraguanay			Secon	d mea	sureme	ent with Limit	= L	_Գ (Upp	ə er qu	uartile me	thod):		
Frequency (MHz)	Limit Lq (dBµV)	Num	ber of c —N ₂	licks	S Number of authorized clicks N2 ≤N1/4							<u> </u>	Verdict
0,15													
0,5													
1, 4													
30													
Supplementa	ry informati	i <u>on:</u>											

4.7 Harmonic current emissions


VERDICT: PASS

Standard	EN 610	000-3-2					
Exlusions		Arc welding equipment intended for professional use.					
(For these categories of equipment, limits are not specified in the EN 61000-		System(s) with nominal voltage(s) less than 220 V_{AC} (line-to-neutral).					
		Equipment with rated power of \leq 75 W (other than lighting equipment).					
3-2 standard)		Professional equipment with total rated power > 1 kW.					
		Symmetrically controlled heating elements with a rated power \ge 200 W.					
		Independent dimmers for incandescent lamps with rated power \leq 1 kW.					

Classific	cation								
	Class A	All app	aratus not classified as Class B, C or D						
\square	Class B	Portab	ortable tools						
			Lighting equipment with active input power > 25 W						
	Class C		Lighting equipment with active input power ≤ 25 W (First requirement, Table 3 column 2)						
			Lighting equipment with active input power ≤ 25 W (Second requirement)						
	Class D	Person	ersonal computers, television receivers						

Port under test	AC ma	AC mains power input							
Voltage – Mains [V]	230 Va	230 Vac							
Frequency – Mains [Hz]	50 Hz	50 Hz							
Observation peroid		6.5 min.	\square	2.5 min.		Other:			
Version of measurement	\boxtimes	EN 61000-4-7:2002 + AM1:2009 (IEC 61000-4-7:2002+AM1:2008)							
instrument standard used EN / IEC61000-4-7 (Cl. 7)		EN 61000-4-7:1991							
Control principle used in	\boxtimes	Comply with the	e requir	ements of the Claus	se 6.1 (E	EN / IEC 61000-3-2).			
the EUT		Not comply with	n the rea	quirements of the C	lause 6.	1 (EN / IEC 61000-3-2).			
		• •							
Operating mode(s) used	Mode 1								
Remark									

Measur	ement data		Po	rt under test	AC mains por	wer input		
Test Re	sult: Pass	Source qu	alification	Normal				
THC(A): Highest	2.673 I-THI parameter valu	D(%): 66.4 Jes during		(A): 0.046 I	POHC Limit(A): 0.377		
ingricot	V_RMS (Volts):	229.73		Frequency(H	z): 50.00			
	I_Peak (Åmps):	12.485		I_RMS (Amps	s): 5.369			
	I_Fund (Amps): Power (Watts):	4.510 898.5		Crest Factor: Power Factor				
Harm#	Harms(avg) 1	00%Limit	%of Limit	Harms(max)	150%Limit	%of Limit	Status	
2	0.050	1.620	3.1	0.060	2.430	2.5	Pass	
3	2.453	3.450	71.1	2.657	5.175	51.3	Pass	
4	0.032	0.645	5.0	0.036		3.7	Pass	
5 6	0.991	1.710	57.9 N/A	1.013		39.5 N/A	Pass	
6 7	0.019 0.345	0.450 1.155	29.9	0.022 0.360		N/A 20.8	Pass Pass	
8	0.011	0.345	N/A	0.012		N/A	Pass	
9	0.046	0.600	7.7	0.052	0.900	5.7	Pass	
10	0.008	0.276	N/A	0.011		N/A	Pass	
11	0.044	0.495	8.9	0.047		6.4	Pass	
12 13	0.010 0.068	0.230 0.315	N/A 21.6	0.012 0.073		N/A 15.5	Pass Pass	
13	0.000	0.315	21.0 N/A	0.073		N/A	Pass	
15	0.072	0.225	31.8	0.084		24.8	Pass	
16	0.014	0.173	N/A	0.016	0.260	N/A	Pass	
17	0.048	0.199	24.2	0.052		17.5	Pass	
18 19	0.011	0.153	N/A	0.016 0.049		N/A 18.3	Pass	
19 20	0.042 0.010	0.178 0.138	23.4 N/A	0.049		18.3 N/A	Pass Pass	
20	0.032	0.161	19.8	0.012		15.2	Pass	
22	0.011	0.125	N/A	0.013	0.188	N/A	Pass	
23	0.033	0.147	22.8	0.036		16.3	Pass	
24	0.009	0.115	N/A	0.014		N/A	Pass	
25 26	0.026 0.011	0.135 0.106	N/A N/A	0.034 0.014		N/A N/A	Pass Pass	
20 27	0.011	0.106	N/A	0.014		N/A	Pass	
28	0.008	0.099	N/A	0.020		N/A	Pass	
29	0.023	0.116	N/A	0.025	0.174	N/A	Pass	
30	0.007	0.092	N/A	0.009		N/A	Pass	
31 32	0.018 0.006	0.110 0.086	N/A N/A	0.022 0.008		N/A N/A	Pass Pass	
32 33	0.006	0.086	N/A N/A			N/A N/A	Pass Pass	
34	0.006	0.081	N/A	0.007		N/A	Pass	
35	0.015	0.096	N/A	0.017	0.144	N/A	Pass	
36	0.006	0.077	N/A	0.007		N/A	Pass	
37	0.014	0.092	N/A	0.016		N/A	Pass	
38 39	0.006 0.012	0.073 0.087	N/A N/A	0.006 0.014		N/A N/A	Pass Pass	
39 40	0.012	0.087	N/A	0.014		N/A	Pass	
	51000			0.000	0.104		. 200	
Remark								

4.8 Voltage changes, voltage fluctuations and flicker	VERDICT:	PASS
---	----------	------

Standard	EN 61000-3-3

Limits

PST (Short term flicker)		≤ 1	\square	Not Applicable		
P _{LT} (Long term flicker)		≤ 0,65	\square	Not Applicable		
dc (Relative Voltage change)	\boxtimes	≤ 3 , 3 %		Not Applicable		
d _{MAX} (Max. voltage change)		≤ 4%		6%		
	\square	7%		Not Applicable		
Supplemental information:						

Performed measurements

Reason for not performing the measurement(s)		Tests are not necessary because the EUT is unlikely to produce significant voltage fluctuations or flicker (clause 6.1).				
Port under test	AC Ma	AC Mains power input				
Voltage – Mains [V]	230 Va	iC				
Frequency – Mains [Hz]	50 Hz	50 Hz				
Test method		Flickermeter according EN / IEC 61000-4-15:2011				
		Simulation (Clause 4.2.3 of EN / IEC 61000-3-3)				
		Analytical method (Clause 4.2.4 of EN / IEC 61000-3-3)				
		Use of $P_{st} =$	1 curve	e (Clause 4.2.5 of E	N / IEC	61000-3-3)
Observation peroid		10 min.		120 min.		Other:
		24 times switching according to Annex B				
Operating mode(s) used	Mode '					
Remark						

See next page.

Measurement data	Port under test	AC mains power input	
Operating mode used during the test	Mode1/ 230 Vac	/ 50 Hz	
Relative voltage change characteristic	dt	0,0 ms	
Maximum voltage change d _{MAX}		1,734%	
Relative Voltage change dc		0,810%	
Short term flicker P _{ST}		N/A	
Long term flicker P_{LT}		N/A	
Remark			

5 **IMMUNITY TEST RESULTS**

5.1 **Performance (Compliance) criteria**

[According to EN 55014-2 (CISPR 14-2)]

<u>Performance criteria A :</u> The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer when the apparatus is used as intended. If the minimum performance level or the permissible performance loss is not specified by the manufacturer then either of these may be derived from the product description and documentation and from what the user may reasonably expect from the apparatus if used as intended.

<u>Performance criteria B</u>: The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer when the apparatus is used as intended. During the test, degradation of performance is allowed however no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer then either of these may be derived from the product description and documentation and from what the user may reasonable expect from the apparatus if used as intended.

<u>Performance criteria C</u>: Temporary loss of function is allowed provided the function is self- recoverable or can be restored by the operation of the controls or by any operation specified in the instruction for use.

5.1.1 **Performance criteria related to immunity tests**

Immunity test	Performance criteria
Electrostatic discharge	В
Radio-frequency electromagnetic fields	A
Fast transients	В
Surge transient	В
Injected currents (radio-frequency common mode)	A
Voltage dips and short interruptions	С

5.1.2 Manufacturer defined performance criteria

Not provided.

5.2 **Monitored – Checked Functions / Parameters**

During the immunity tests the following functions of the EUT has/have been monitored/checked.

\boxtimes	Motor speed		Display data			
	Switching		Data storage			
	Standby mode		Sensor functions			
	Temperature		Audible signals			
	Power consumption		Others : LED's			
	AC mains input current		Others :			
	Timing		Others :			
	Illumination		Others :			
<u>Supp</u>	Supplementary information :					

Immunity test	Monitored - Checked function(s)/parameter(s) during / after the test	Method
Electrostatic discharge	PASS	
Radio-frequency electromagnetic fields	N/A	
Fast transients	PASS	
Surge transient	PASS	
Injected currents (radio-frequency common mode)	PASS	
Voltage dips and short interruptions	PASS	
Supplementary information :	<u>.</u>	

5.3 Electrostatic discharge immunity VERDICT: PASS

Electrostatic discharges (ESD) are the result of persons or objects that accumulate static electricity due to for instance walking on synthetic carpets. The ESD can influence the operation of equipment or damage its electronics, either by a direct discharge or indirectly by coupling or radiation. Both effects are simulated during the tests.

Requirements

Standard	EN 55014-2				
Basic standard	EN 61000-4-2				
Port under test	Enclosure				
Air discharges 1)	□ ±2 kV □ ±4 kV ⊠ ±8 kV □ kV				
Contact discharges 1)	□ ±2 kV □ ±4 kV □ ±8 kV □ kV				
Number of discharges	≥ 10 per polarity with ≥ 1 sec interval.				
¹⁾ Tests with lower voltages are not required.					

Set-up	Table-top	Floor standing			
Ambient temperature [°C]	23 °C	Relative Humidity air [%] 46.1%			
Voltage – Mains [V]	230 Vac				
Frequency – Mains [Hz]	50 Hz				
	1				
Operating mode(s) used	Mode 1				

Test Point		Test Voltage [kV] & Polarity	Coupling type	# of applied discharges / polarity	Discharge interval [s]	
\square	Points on conductive surface as indicated in the picture below.		±4	Contact	10	1
\boxtimes		-conductive surface the picture below.	±8	Air	10	1
\boxtimes	HCP top side.		±4	Contact	10	1
\square	HCP bottom side.		±4	Contact	10	1
\square	VCP right side.		±4	Contact	10	1
\square	VCP left side.		±4	Contact	10	1
\boxtimes	VCP front side.		±4	Contact	10	1
\square	VCP rear side.		±4	Contact	10	1
Observation(s) During the test no loss of performance was observed. After the test the EUT functioned as intended. No unacceptable loss of performance or data was observed. Supplementary information:						

5.4 Radio-frequency electromagnetic fields immunity VERDICT: N/A

During the test it is verified if the equipment under test (EUT) has sufficient immunity against radiated electromagnetic fields. Industrial electromagnetic sources, walkie-talkies, radio transmitters, television transmitters and telecommunication equipment including cellular telephones and other emitting devices can generate these fields.

Requirements

Standard	EN 55014-2					
Basic standard	EN 61000-4-3	EN 61000-4-3				
Port under test	Enclosure	Enclosure				
Frequency range	Test level	Modulation	Dwell time	Step size		
80 – 1000 MHz	3 V/m	80% AM (1kHz)	≥ 0,5 s	≤ 1%		
Supplementary information:						

Test method	\bowtie	EN 6100)0-4-3			EN 61000-4-2	20		
Test set-up		Equipment on the table (0,8 m height)							
		Equipment standing on floor (0,05 0,15 m height)							
Voltage – Mains [V]	230 \	/ac							
Frequency Mains [Hz]	50 H	Z							
Operating mode(s) used	Mode	Mode 1							
Frequency range (applied)		ntenna arization	Test level (applied)			lodulation (applied)	Dwell time (applied)		Remark
80 – 1000 MHz		Ħ	3 V/m		80%	<mark>6 AM (1kHz)</mark>	3 s		
(step size 1%)		¥	3 V/m		80%	<mark>∂ AM (1kHz)</mark>	3 s		
Exposed side of the EUT	\square	Front (0 ^e	')	\bowtie	Right	: (90 °)		Top	
		Rear (18	}0 €)	\bowtie	Left (270^{°)}	Bottom		
Observation(s)	During the test no loss of performance was observed. After the test the EUT functioned as intended. No unacceptable loss of performance was observed.								
Supplementary information:	<u>:</u>								

5.5	Electrical Fast Transients immunity	VERDICT: PASS
•.•		

The EFT immunity test simulates disturbances by bursts of very short transients caused for example by switching off loads such as an AC motor or bouncing relay contacts. The transients are likely to disturb electronics but less likely to cause damage.

Requirements

Standard EN 55014-2					
Basic standard EN 61000-4-4					
Pulse characteristics 5/50 ns					
	Port		Test level	Repetition frequency	Duration
\square A	AC input-output power 1)	± 1000 V	5 KHz	2 min. / polarity	
	DC input-output power 2)	± 500 V	5 KHz	2 min. / polarity	
	Signal and Control lines ³	± 500 V	5 KHz	2 min. / polarity	

¹⁾ For extra low voltage a.c ports, this testing is only applicable to ports interfacing with cables whose total length may exceed 3 m according to the manufacturer's functional specification.

²⁾ Not applicable to battery operated appliances that cannot be connected to the mains while in use.

³⁾ Applicable only to ports interfacing with cables whose total length may exceed 3 m according to the manufacturer's functional specification.

Voltage – Mains [V]	230 \	230 Vac				
Frequency – Mains [Hz]	50 Hz	50 Hz				
Operating mode(s) used	Mode	Mode 1				
Test Set-up		Equipment standing on floor at $(0,1 \pm 0,01)$ m above ground plane				
		Equipment on the table $(0,1 \pm 0,01)$ m above ground plane				
		Artificial hand applied.				
Coupling	\square	Common mode 🗌 Other:				

Port(s) under test	ort(s) under test		Repetition Frequency	Test duration / polarity		Injectior	n meth	od	
AC / DC mains powe	C / DC mains power input		5 KHz	2 min	\square	CDN		Clamp	
AC / DC power output			5 KHz			CDN		Clamp	
Ethernet / LAN			5 KHz			CDN		Clamp	
Observation(s)	Observation(s) During the test no loss of performance was observed. After the test the EUT functioned as intended. No unacceptable loss of performance was observed.								

5.6 Surge transient immunity VERDICT: PASS

The surge transient immunity test simulates the surges that are caused by over-voltages due to indirect (induced) lightning transients. The pulse is a slow transient with high-energy contents and due to its long duration may cause damage to an unprotected EUT.

Requirements

Standard	EN 55014-2				
Basic standard	EN 61000-4-5	EN 61000-4-5			
Pulse characteristics	1,2/50µs Voltage;	1,2/50µs Voltage; 8/20µs Current			
Repetition rate	\geq 60 secs. (for eac	≥ 60 secs. (for each test level and phase angle)			
Number of pulses	5 pulses (at each	5 pulses (at each polarity and phase angle)			
Port		Test level & Pol	Phase angle		
Poli		Line to Line	Line to Earth	[°]	
AC input power ¹⁾		+ 1 kV	N/A	90	
AC input power 1)	- 1 kV	N/A	270		
¹⁾ Tests with lower voltages are not required.					

Voltage – Mains [V]	230 Vac
Frequency – Mains [Hz]	50 Hz
Operating mode(s) used	Mode 1
Repetition rate	60 secs. (for each test level and phase angle)
Number of pulses	5 pulses (at each polarity and phase angle)

	Port(s) under test	Coupling	Test level & Polarity	Phase angle [°]	Remark			
\boxtimes	AC mains input power	Line to Neutral	+1 kV	90				
\square	AC mains input power	Line to Neutral	-1 kV	270				
	AC mains input power	Line to Earth	+2 kV	90	1			
	AC mains input power	Line to Earth	-2 kV	270	1			
	AC mains input power	Neutral to Earth	+2 kV	90	1			
	AC mains input power	Neutral to Earth	-2 kV	270	1			
Obse	Observation(s) During the test no loss of performance was observed. After the test the EUT functioned as intended. No unacceptable loss of performance or data was observed.							
Supp	Supplementary information:							
1. Tł	1. The EUT does not include an earth port.							

5.7 Injected currents (RF common mode) immunity VERDICT: PASS

During this test the immunity of the equipment for induced or conducted electromagnetic fields is checked. Fields generated by radio and other transmitters cause RF voltages in long cables like the mains network. This test reproduces these induced disturbing voltages by injecting them to the EUT via the cabling.

Requirements

Standa	ard	EN 55014-2			
Basic	standard	EN 61000-4-6			
	Frequency range	Modulation	Step size	Dwell time	
	0,15 – 80 MHz	80% AM (1kHz)	≤ 1%	≥ 0,5 s	
\square	0,15 – 230 MHz	80% AM (1kHz)	≤ 1%	≥ 0,5 s	
	Port		Test level, <i>U</i> o		
\square	AC input-output power 1)		3 V		
	DC input-output power 2)	3)	1 V		
	Signal and Control lines	4)	1 V		

¹⁾ For extra low voltage a.c ports, this testing is only applicable to ports interfacing with cables whose total length may exceed 3 m according to the manufacturer's functional specification.

²⁾ Not applicable to battery operated appliances that cannot be connected to the mains while in use.

³⁾ Applicable to battery operated appliances that can be connected to the mains while in use, or to appliances for which the length of d.c. cables may exceed 3 m according to the manufacturer's functional specification.

⁴⁾ Applicable only to ports interfacing with cables whose total length may exceed 3 m according to the manufacturer's functional specification.

Frequency range (applied)			Modulation (applied)	Step size (applied)	
0,15 – 80 MHz	🛛 0,15 – 230 MHz		80% AM (1kHz)	1%	
Voltage – Mains [V]	230 Vac		Frequency – Mains [Hz]	50 Hz	
Operating mode(s) used	Mode 1				
Test set-up		Equipment standing on floor at $(0,1 \pm 0,01)$ m above ground plane.			
		Equipment on the table $(0,1 \pm 0,01)$ m above ground plane.			
	\square	Artificial hand applied.			

Port(s) under test		Test Level (applied)	Injection method	Dwell time (applied)	Remark
AC mains power input		3 V	CDN-M2	3 s	
Observation(s) During the test no loss of performance was observed. After the test the EUT functioned as intended. No unacceptable loss of performance or data was observed.					
Supplementary information:					

5.8 **Power supply interruptions and dips immunity VERDICT: PASS**

The purpose of the test is to verify the immunity of the equipment against voltage dips and voltage interruptions. It helps to ensure that the equipment functions properly (as expected and safely) with power supply fluctuations. Voltage dips and interruptions are caused by faults in the LV, MV, HV networks (short-circuit or ground faults).

Requirements

EN 55014-2						
EN 61000-4-11	N 61000-4-11					
3 dips / interrupti	3 dips / interruptions for each test level and phase angle					
≥ 10 seconds						
Test level 1)	Period (Cycles)		Performance Criteria			
	50 Hz	60 Hz				
U _{NOM} – 100%	0,5	0,5	C; Refer to the chapter 5.1 for details.			
U _{NOM} – 60%	10	12	C; Refer to the chapter 5.1 for details.			
U _{NOM} – 30%	25	30	C; Refer to the chapter 5.1 for details.			
	3 dips / interrupti ≥ 10 seconds Test level ¹⁾ $U_{NOM} - 100\%$ $U_{NOM} - 60\%$	EN 61000-4-11 3 dips / interruptions for each ≥ 10 seconds Test level ¹⁾ Period (1 50 Hz U _{NOM} – 100% 0,5 U _{NOM} – 60% 10	EN 61000-4-113 dips / interruptions for each test lev≥ 10 secondsPeriod (Cycles)Test level 1)50 Hz60 HzUNOM - 100%0,50,5UNOM - 60%10			

¹⁾ Changes to the voltage level shall occur at a zero crossing point in the a.c. voltage waveform.

NOTE: Where the equipment has a rated voltage range the following shall apply:

- If the voltage range does not exceed 20% of the lower voltage specified for the rated voltage range. A single voltage within that range may be selected for testing.
- In all other cases, the test procedure shall be applied for both the lowest and highest voltages declared in the voltage range.

	Torminol	Voltage dip	Duration	[cycles]	Repetion rate	Number of	Phase angle
UNOM [VAC]	Terminal	[% U _{NOM}]	50 Hz	60 Hz	[s]	dips per test	[°]
230	L-N	0	0,5	/	10	3	0, 180
230	L-N	40	10	/	10	3	0, 180
230	L-N	70	25	/	10	3	0, 180
Operating mo	de(s) used	Mode 1					
Operating int	Juc(3) useu		o loss of pa	rformance	a was observed /	ftor the test the	FUT
Observation(s)	During the test no loss of performance was observed. After the test the EUT functioned as intended. No unacceptable loss of performance was observed.					
Supplementary information:							

6 **IDENTIFICATION OF THE EQUIPMENT UNDER TEST**

7 MEASUREMENT UNCERTAINTIES

The table(s) below show(s) measurment uncertainties of the EMC test set-ups. The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

DEKRA SHANGHAI

Emission tests		Uncertainty	Ucispr
Conducted disturbance (mains po	3,08 dB	3,83 dB	
Conducted disturbance using an <i>i</i>	AN 150KH7 30MH7	4,04 dB	4,20 dB
	AAN, TSORTZ = SOWTZ	4,44 dB	4,59 dB
Conducted disturbance using a V	P, 150kHz – 30MHz	1,82 dB	2,91 dB
Conducted disturbance using a C	VP, 150kHz – 30MHz	3,44 dB	3,85 dB
Conducted disturbance using a C	P, 150kHz – 30MHz	2,06 dB	2,89 dB
CDNE, 30MHz – 300MHz	3,34 dB	3,79 dB	
Disturbance power, 30 MHz - 300	3,76 dB	4,52 dB	
Radiated electromagnetic disturba	ances, (9 KHz – 30 MHz)	2,62 dB	3,3 dB
Radiated emissions; (Horz.)	30 MHz – 300 MHz	3,60 dB	5,34 dB
	300 MHz – 1000 MHz	3,10 dB	
Redicted amiggiana, () (art.)	30 MHz –300 MHz	3,20 dB	6,32 dB
Radiated emissions; (Vert.)	3,20 dB	0,32 00	
LF harmonic current emissions	0,2%	na	
LF voltage fluctuations	2,5%	na	
EMF		2,02 dB	na

Immunity tests	Uncertainty
	U _{peak} =6%, U _{30ns} =6%,
Electrostatic discharge	U _{60ns} =6%, U _{rt} =13%
Radio-frequency electromagnetic fields	1,48 dB
Fast transients	U _{tr} =6,2%, U _{pw} =3%,
	U _{bp} =3%, U _{bd} =3%
Surges	U _{peak} =3,3%, U _{ft} =3%, U _{dt} =3%
Injected currents (radio-frequency common mode)	1,71 dB
Voltage dips and short interruptions	U _{out} =0,4%, U _f =3%, U _{r-d} =3%

8 USED EQUIPMENT

Conducted Emission

Equipment	Manufacturer	Model No.	Serial No.	Cal. due date
EMI test receiver	R&S	ESCI	101351	2020/07/18
EMI test receiver	R&S	ESR3	102305	2020/07/18
Artificial Mains Network	R&S	ENV216	101620	2020/07/18
Artificial Mains Network	SCHWARZBECK	NSLK 8128	8128-287	2020/08/12
Asymmetric artificial network	SCHWARZBECK	NTFM8131	8131-151	2020/07/18
Asymmetric artificial network	TESEQ	ISN T800	30306	2020/07/18
High power voltage probe	SCHWARZBECK	TK9421	#308	2020/04/20
Capacitive voltage probe	TESEQ	CVP 2200A	43476	2020/07/18
Current probe	ETS.LINDGREN	91550-1L	218473	2020/08/13

CDNE

Equipment	Manufacturer	Model No.	Serial No.	Cal. due date
EMI test receiver	R&S	ESCI	101351	2020/07/18
EMI test receiver	R&S	ESR3	102305	2020/07/18
Coupling/Decoupling Network	SCHWARZBECK	CDNE M3	00088	2020/12/11
Coupling/Decoupling Network	TESEQ	CDN M016S	34640	2020/07/18

Radiated electromagnetic disturbances (9 kHz to 30 MHz)

Equipment	Manufacturer	Model No.	Serial No.	Cal. due date
EMI test receiver	R&S	ESCI	101351	2020/07/18
EMI test receiver	R&S	ESR3	102305	2020/07/18
3-dimensional large loop antenna	SCHWARZBECK	HXYZ 9170	HXYZ9170-245	2020/07/18

Disturbance Power

Equipment	Manufacturer	Model No.	Serial No.	Cal. due date
EMI test receiver	R&S	ESCI	101351	2020/07/18
EMI test receiver	R&S	ESR3	102305	2020/07/18
EMI absorbing clamp	SCHWARZBECK	MDS 21B	4183	2020/07/25

Click

Equipment	Manufacturer	Model No.	Serial No.	Cal. due date
EMI test receiver	R&S	ESR3	102305	2020/07/18
Artificial Mains Network	R&S	ENV216	101620	2020/07/18
Artificial Mains Network	SCHWARZBECK	NSLK 8128	8128-287	2020/08/09

Harmonic & Flicker

Equipment	Manufacturer	Model No.	Serial No.	Cal. due date
Harmonic currents and flicker tester	California Instruments	CTS	1306A00135	2020/05/14
AC power source	California Instruments	5001iX-CTS-400	1306A00135	2020/05/14
Harmonic currents and flicker tester	TESEQ	Profline 2145	1736A02510	2020/08/09

ESD

Equipment	Manufacturer	Model No.	Serial No.	Cal. due date
ESD generator	TESEQ	NSG 435	6716	2020/06/05

EFT, Surge and V-Dips

Equipment	Manufacturer	Model No.	Serial No.	Cal. due date
EFT, Surge, DIPS all-in-one	TESEQ	NSG-3040-MF	2006/EFT:0535 /SURGE:1234 /DIPS:2062	2020/05/14

Injected currents

Equipment	Manufacturer	Model No.	Serial No.	Cal. due date
Compact immunity test system (RF)	TESEQ	NSG 4070-30	35895	2020/05/14
Coupling decoupling network (CDN)	TESEQ	CDN M016S	34640	2020/05/14
Attenuator	TESEQ	ANT 6050	34847	2020/05/14

9 TEST PHOTOS

Conducted disturbance voltage at mains terminals

