

3123144.50

EMC Test report for DRY-CUT SAW

Model: DRC355

Shanghai, date of issue: 2013-01-14

Author : Richie Tang

By order of Lee Yeong Industrial Co., Ltd. at Yunlin County 64057, Taiwan

Rental Tom

sky zhong

author : Richie Tang B 23 pages 0 annexes (sec) DEKRA Testing and Certification (Shanghai) Ltd. Document reviewed : Sky Zhang

SH-F-PC4-005 v1.1

DEKRA Testing and Certification (Shanghai) Ltd. 10F #250 Jiangchangsan Road Building 16 Headquarter Economy Park Shibei Hi-Tech Park, Zhabei District Shanghai 200436 CHINA Telephone +86 21 60567666. Telefax +86 21 60567555

-page 2 of 23-

CONTENTS

1	Conclusion	3
1.1	Model description	3
1.2	Environment	4
1.3	Classification	1
2	Summary	5
2.1	Applied standards	5
2.2	Overview of results	5
3	General Information	5
3.1	Product Information6	3
3.2	Customer Information	3
3.3	Test data	7
3.4	Environmental conditions	7
4	Emission test results	3
4.1	Mains conducted disturbance voltage	3
4.2	Disturbance Power11	1
4.3	Harmonic currents13	3
4.4	Voltage fluctuations (Flicker)15	5
5	Immunity test results16	3
5.1	Electrostatic discharge immunity16	3
5.2	Electrical Fast Transient immunity17	7
5.3	Surge transient immunity18	3
5.4	RF Conducted immunity19	9
5.5	Power supply interruptions and dips20)
6	Identification of the equipment under test21	1

page

-page 3 of 23-

1 CONCLUSION

The equipment under test (EUT) does meet the essential requirements of the EMC Directive 2004/108/EC.

The tests described in this report do not result in the right to use any approval mark as conferred by DEKRA. As far as the tests were based on certain specifications, these are mentioned in the report.

The conclusion and results stated in this test report are based on a non-recurrent examination of sample(s) provided by the applicant.

1.1 **Model description**

The apparatus as supplied for the test is a dry-cut saw; model DRC355 intended for residential use. This product has electronic control circuit and earth connection.

Figure 1 Overview

The operating modes as stated in the user manual are on and off modes.

-page 4 of 23-

1.2 Environment

The requirements and standards apply to equipment intended for use in:

✓	Residential (domestic) environment
✓	Commercial and light-industrial environment
	Industrial environment
	Medical environment

1.3 Classification

The standard EN 55014-2 is subdivided in four categories. For each category, the specific immunity requirements are formulated.

	Category 1	Apparatus containing no electronic control circuitry				
~	Category 2Apparatus containing electronic control circuitry with no internal clock or oscillator frequency higher than 15 MHz.					
	Category 3	Battery powered apparatus containing electronic control circuitry with no internal clock higher than 15 MHz.				
	Category 4	All other apparatus.				

-page 5 of 23-

2 SUMMARY

This chapter presents an overview of standards and results. Refer to the next chapters for details of measured test results and applied test levels.

2.1 Applied standards

Standard	Year	Title				
EN 55014-1	2006	Emission – Electrical motor-operated and thermal				
A1	2009	appliances for household and similar purposes, electrical				
A2	2011	tools and similar electrical apparatus				
EN 55014-2	1997					
A1	2001	Immunity - Household appliances, electric tools and similar				
A2	2008					
EN 61000-3-2	2006					
A1	2009	Limits for harmonic currents emissions				
A2	2009					
EN 61000-3-3	2008	Limitation of voltage fluctuations and flicker				

2.2 **Overview of results**

Emission tests	Result
Mains conducted disturbance voltage	PASS
Disturbance Power	PASS
Harmonic current emission	PASS
Limitation of voltage fluctuations (flicker)	PASS

Immunity tests	Result
Electrostatic Discharges (ESD)	PASS
Electrical fast transient (EFT)	PASS
Surge transients	PASS
Conducted RF disturbances	PASS
Power supply voltage interruptions & dips	PASS

-page 6 of 23-

3 **GENERAL INFORMATION**

3.1 **Product Information**

Equipment under test	DRY-CUT SAW
Trade mark	AGP
Tested Type	DRC355
Ratings	220-240 Vac; 50-60 Hz; 2200 W;
Traings	10,4 A; n ₀ : 1300 /min; Ø355 mm; Class I

3.2 **Customer Information**

Applicant/Manufacturer	Lee Yeong Industrial Co., Ltd.
Contact person	Ms. Diane Wu
Telephone	+886 5 551 8689
Telefax	+886 5 551 8635
Address	No.2, Kejia Road, Douliu City, Yunlin County 64057, Taiwan

Factory	Lee Yeong Industrial Co., Ltd.
Contact person	Ms. Diane Wu
Telephone	+886 5 551 8689
Telefax	+886 5 551 8635
Address	No.2, Kejia Road, Douliu City, Yunlin County 64057, Taiwan

-page 7 of 23-

3.3 Test data

Location Global Certification Corp.						
Address No.146, Sec. 2, Xiangzhang Rd., Xizhi Dist., New City 221, Taiwan						
Date	Jul. 2012					
Supervised by	Richie Tang					

3.4 Environmental conditions

Tests have been performed in a controlled laboratory environment, where the environmental conditions are maintained within the applicable ranges.

Ambient temperature	15 °C – 35 °C
Relative Humidity air	30% - 60%

Measurement Uncertainty

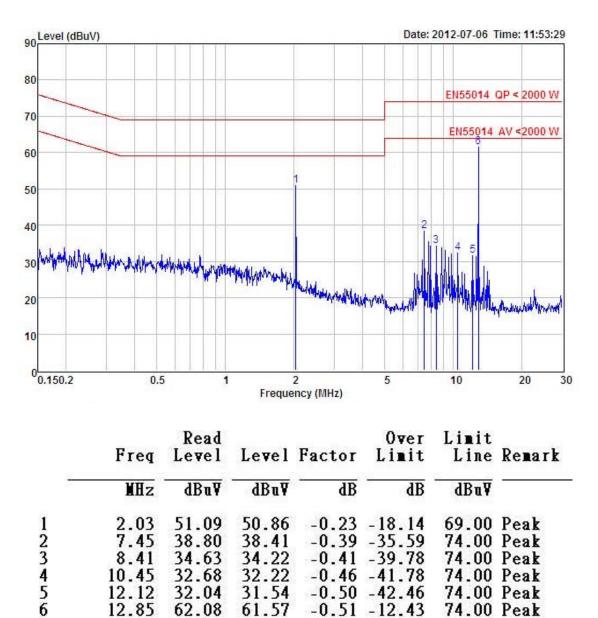
Conducted Emission Expanded Uncertainty: U = 3.38 dBDisturbance Power Expanded Uncertainty: U = 3.92 dB

-page 8 of 23-

4 EMISSION TEST RESULTS

4.1 Mains conducted disturbance voltage

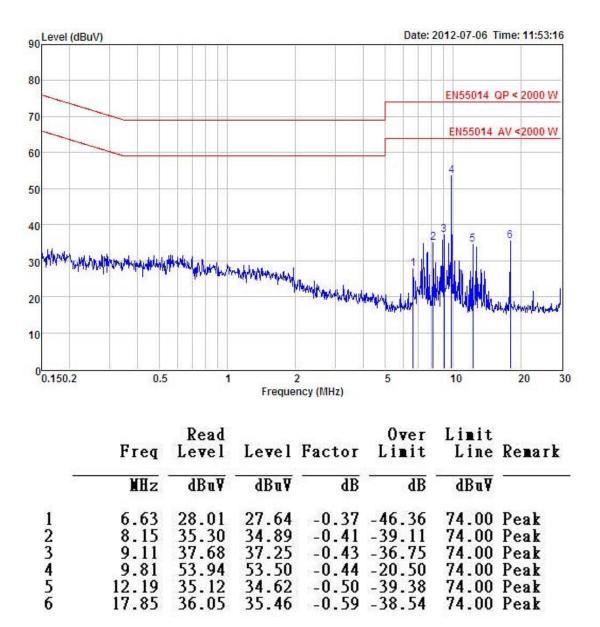
Standard			EN 55014-1	(Tools)				
Frequency [M	Hz]		QP [dB(μV)]			AV [dB(μV)]		
0,15	-	0,35	66	_	59 *)	59	_	49 *)
0,35	_	5	59			49		
5	_	30	64			54		


*) Limits decreasing linearly with the logarithm of the frequency

	Rated power below 700 W	Limits as above
	Rated power between 700 and 1000 W	Limits +4 dB
~	Rated power above 1000 W	Limits +10 dB

Port	AC mains
Test method	LISN
Mode	On mode with an artificial hand, no load

-page 9 of 23-



Line

No other significant emissions were recorded at the frequency range of interest employing both the QP and AV detectors.

-page 10 of 23-

Neutral

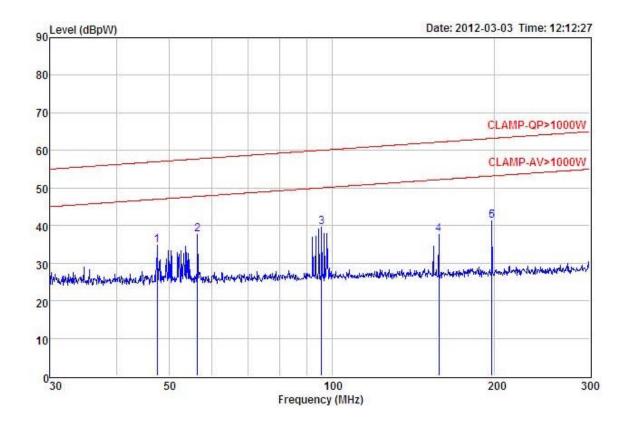
No other significant emissions were measured at the frequency range of interest employing both the QP and AV detectors.

Refer to chapter 6 for the test set-up.

Conclusion:

4.2 **Disturbance Power**

Standard	EN 55014-1	
Frequency [MHz]	QP [dB(pW)]	AV [dB(pW)]
30 – 300	45 – 55 *)	35 – 45 *)


*) Limits increasing linearly with the frequency

For tools the following limits apply to the AC Mains port:

	Rated power below 700 W	Limits as above
	Rated power between 700 and 1000 W	Limits +4 dB
✓	Rated power above 1000 W	Limits +10 dB

Port	AC Mains
Mode	On mode with no load

Results

DEKRA Testing and Certification (Shanghai) Ltd. Document \Fileserver\quality doc\CBTL DOC\applicable documents\ SH-F-PC4-005

-page 12 of 23-

3123144.50

	Freq	Read Level	Level	Factor	Over Limit	Limit Line	Remark
-	MHz	dBp₩	dB₽₩	dB	dB	dBp₩	
1	47.44	34.79	34.79	0.00	-22.21	57.00	Peak
2	56.38	37.54	37.54	0.00	-20.21	57.75	Peak
3	95.75	39.54	39.54	0.00	-20.51	60.05	Peak
4	157.81	37.76	37.76	0.00	-24.46	62.22	Peak
5	197.75	41.35	41.35	0.00	-21.85	63.20	Peak
6	197.75	41.35	41.35	0.00	-21.85	63.20	

No other significant emissions were measured at the frequency range of interest employing both the QP and AV detectors.

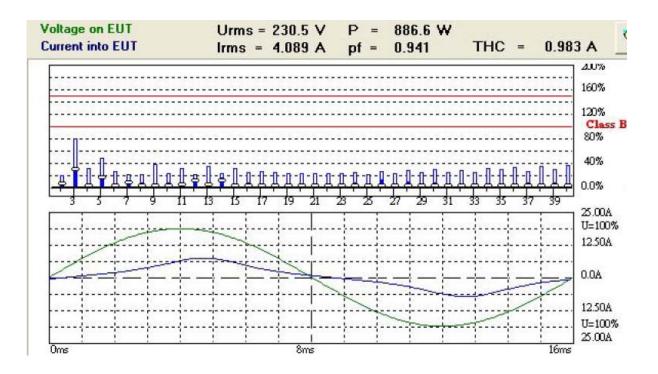
Refer to chapter 6 for the test set-up.

According to clause 4.1.2.3.2 (EN 55014-1):

Appliances are deemed to comply in the frequency range from 300 MHz to 1 000 MHz if both of the following conditions (1) and 2)) are fulfilled:

1) all emission readings from the equipment under test shall be lower than the applicable limits (Table 2a) reduced by the margin (Table 2b);

2) the maximum clock frequency shall be less than 30 MHz.



4.3 Harmonic currents

Standard	EN 61000-3-2
Port	AC Mains supply
Rated power	2200 W

ſ		Class A	All apparatus not classified as Class B, C or D
Ī	~	Class B	Portable tools
Ī		Class C	Lighting equipment
Ī		Class D	Personal computers, television receivers

Results

Urms = 230.5V Freq = 60.019 Range: 25 A Irms = 4.089A Ipk = 7.458A cf = 1.824 P = 886.6W S = 942.6VA pf = 0.941 THDi = 24.0 % THDu = 0.10 % Class B

Test completed, Result: PASSED

3123144.50

		-page 14 of 23-
Ord	ler Fre	q. Iavg Irms Imax Limit
		[A] [A] [A] [A]
1		3.7755 3.9658 5.3360
2	120	0.0430 0.0381 0.2762 1.6200
3	180	0.9426 0.9506 2.6550 3.4500
4	240	0.0037 0.0198 0.1846 0.6450
5	300	0.2266 0.2274 0.7629 1.7100
6	360	0.0015 0.0183 0.1038 0.4500
7	420	0.0486 0.0458 0.2090 1.1550
8	480	0.0007 0.0153 0.0626 0.3450
9	540	0.0038 0.0137 0.2121 0.6000
10	600	0.0005 0.0137 0.0549 0.2760
11	660	0.0050 0.0153 0.1434 0.4950
12	720	0.0191 0.0259 0.0443 0.2300
13	780	0.0038 0.0107 0.0977 0.3150
14	840	0.0166 0.0259 0.0381 0.1971
15	900	0.0005 0.0076 0.0656 0.2250
16	960	0.0002 0.0076 0.0366 0.1725
17	1020	0.0003 0.0061 0.0458 0.1985
18	1080	0.0002 0.0061 0.0336 0.1533
19	1140	0.0002 0.0046 0.0351 0.1776
20	1200	0.0001 0.0046 0.0275 0.1380
21	1260	0.0002 0.0031 0.0320 0.1607
22 23	1320	$0.0001 \ 0.0031 \ 0.0244 \ 0.1255$ $0.0001 \ 0.0031 \ 0.0305 \ 0.1467$
23 24	1380 1440	0.0001 0.0031 0.0305 0.1467 0.0001 0.0061 0.0244 0.1150
24 25	1500	0.0001 0.0081 0.0244 0.1150
26	1560	0.0001 0.0107 0.0244 0.1062
27	1620	0.0001 0.0015 0.0244 0.1250
28	1680	
29	1740	0.0001 0.0015 0.0244 0.1164
30	1800	0.0001 0.0046 0.0244 0.0920
31	1860	0.0001 0.0015 0.0244 0.1089
32	1920	0.0001 0.0031 0.0214 0.0862
33	1980	0.0001 0.0015 0.0229 0.1023
34	2040	0.0001 0.0031 0.0229 0.0812
35	2100	0.0001 0.0015 0.0259 0.0964
36	2160	0.0001 0.0015 0.0229 0.0767
37	2220	0.0001 0.0046 0.0214 0.0912
38	2280	0.0001 0.0015 0.0229 0.0726
39	2340	0.0001 0.0046 0.0229 0.0865
40	2400	0.0001 0.0015 0.0229 0.0690

-page 15 of 23-

4.4 Voltage fluctuations (Flicker)

Standard	EN 61000-3-3
Port	AC Mains supply
Voltage	230 V _{AC}
Mode	On mode

Equipment intended to be connected to 230/400 V_{AC} 50 Hz supply systems may not produce voltage fluctuations in the supply systems due to variation of the input current above the limits as stated below.

P _{ST}	Not applicable*
P _{LT}	Not applicable*
dt > 3,3%	≤ 500 ms
d _c	≤ 3 , 3%
d _{MAX}	≤ 7%

Results

Relative voltage change characteristic dt	0,0 ms
Maximum voltage change d _{MAX}	1,340%
Relative Voltage change d _c	1,010%
Short term flicker P _{ST}	Not applicable*
Long term flicker P_{LT}	Not applicable*

In addition, this test was conducted in accordance with Annex B of EN 61000-3-3:2008.

* The EUT belongs to hand-held tools (portable tools without heating elements), according to EN 61000-3-3, clause A.9, P_{ST} and P_{LT} shall not be evaluated.

-page 16 of 23-

5 IMMUNITY TEST RESULTS

5.1 **Electrostatic discharge immunity**

Electrostatic discharges (ESD) are the result of persons or objects that accumulate static electricity due to for instance walking on synthetic carpets. The ESD can influence the operation of equipment or damage its electronics, either by a direct discharge or indirectly by coupling or radiation. Both effects are simulated during the tests.

Requirements

Standard	EN 55014-2
Basic standard	EN 61000-4-2
Port	Enclosure
Performance criterion	B; During the test degradation is allowed.
	No change of operating state or stored data is allowed.
Air discharges	8 kV
Contact discharges	4 kV
Mode	On mode

Performed tests

Air discharges	✓	4 kV	✓	8 kV		15 kV	
Contact discharges	✓	2 kV	✓	4 kV		8 kV	
Via coupling planes	✓	Horizontal			\checkmark	Vertical	
Polarity	✓	Positive		✓	Negative		
Set-up	✓	Table-top				Floor st	anding
Ambient temperature	21 °	21 °C					
Relative Humidity air	48%						

Observations

During the test no loss of performance was observed. After the test the EUT functioned as intended. No unacceptable loss of performance was observed.

Conclusion:

-page 17 of 23-

5.2 Electrical Fast Transient immunity

The EFT immunity test simulates disturbances by bursts of very short transients caused for example by switching off loads such as an AC motor or bouncing relay contacts. The transients are likely to disturb electronics but less likely to cause damage.

Requirements

	·				
Standard	EN 55014-2				
Basic standard	EN 61000-4-4				
Performance criterion	B; During the test degradation	B; During the test degradation is allowed.			
	No change of operating state or stored data is allowed.				
Pulse characteristics	5/50 ns				
Peak Voltage; Port	1 kV; AC input power port				
Repetition frequency	✓ 5 kHz	2,5 kHz			

Performed tests

Tested Voltage; Port	1 kV	1 kV; AC input power port			
Mode	On n	On mode			
Injection method	✓	CDN		Capacitive clamp	
Polarity	✓	✓ Positive ✓ Negative			
Set-up	✓	Table-top		Floor standing	

Observations

During the test no loss of performance was observed. After the test the EUT functioned as intended. No unacceptable loss of performance was observed.

-page 18 of 23-

5.3 Surge transient immunity

The surge transient immunity test simulates the surges that are caused by overvoltages due to indirect (induced) lightning transients. The pulse is a slow transient with high-energy contents and due to its long duration may cause damage to an unprotected EUT.

Requirements

Standard	EN 55014-2		
Basic standard	EN 61000-4-5		
Performance criterion	B; During the test degradation is allowed.		
	No change of operating state or stored data is allowed.		
Pulse characteristics	1,2/50 µs		
Peak Voltage; Port	1 kV; AC input power port (Line to line)		
Feak Vollage, Foll	2 kV; AC input power port (Line to earth)		

Performed tests

Tested Voltage; Port	1 kV; AC input power port (Line to line) 2 kV; AC input power port (Line to earth)			
Mode	On mode			
Polarity	 ✓ Positive ✓ Negative 			

Observations

During the test no loss of performance was observed. After the test the EUT functioned as intended. No unacceptable loss of performance was observed.

Conclusion: **PASS**

-page 19 of 23-

5.4 **RF Conducted immunity**

During this test the immunity of the equipment for induced or conducted electromagnetic fields is checked. Fields generated by radio and other transmitters cause RF voltages in long cables like the mains network. This test reproduces these induced disturbing voltages by injecting them to the EUT via the cabling.

Requirements

Standard	EN 55014-2
Basic standard	EN 61000-4-6
Performance criterion	A; Operation as intended
Frequency range	0,15 – 230 MHz
Modulation	1 kHz – 80% AM
Test level; Port	3 V; AC input power port

Performed tests

Tested level; Port	3 V;	AC input power port		
Mode	On m	On mode		
Frequency range	0,15 – 230 MHz			
Dwell time	3 seconds			
Injection method	~	CDN-M3		EM clamp

Observations

During the test no loss of performance was observed. After the test the EUT functioned as intended. No unacceptable loss of performance was observed.

-page 20 of 23-

5.5 **Power supply interruptions and dips**

Requirements

Basic standard	EN 61000-4-11
Performance criterion	B; During the test degradation is allowed.
	No change of operating state or stored data is allowed.
	C; Temporary, self-recoverable loss of function is
	allowed.

Standard	EN 55014-2			
			50 Hz	60 Hz
AC input power port	С	U _{NOM} – 30%	(25 periods)	(30 periods)
	С	U _{NOM} – 60%	(10 periods)	(12 periods)
	С	U _{NOM} – 100%	(0,5 period)	(0,5 period)

Performed tests

Tested voltage	AC input power port				
Mode	On mode				
	50 Hz	60 Hz			
AC input power port	U _{NOM} – 30% (25 periods)	U _{NOM} – 30% (30 periods)			
	U _{NOM} – 60% (10 periods)	U _{NOM} – 60% (12 periods)			
	U _{NOM} – 100% (0,5 period)	U _{NOM} – 100% (0,5 period)			

Observations

During the test no loss of performance was observed. After the test the EUT functioned as intended. No unacceptable loss of performance was observed.

-page 21 of 23-

6 IDENTIFICATION OF THE EQUIPMENT UNDER TEST

The photograph shows the tested device.

Figure 2 Conducted Emission test setup

Figure 3 Disturbance power test setup

-page 22 of 23-

Figure 4 Harmonics & Flicker & Surge & DIPS test setup

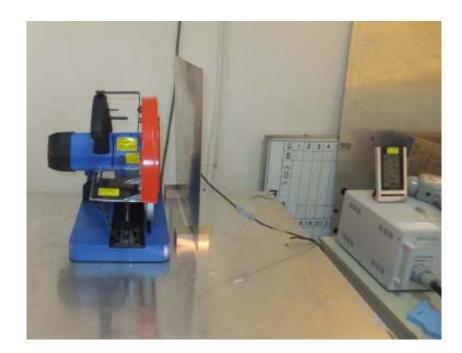


Figure 5 ESD test setup

-page 23 of 23-

Figure 6 EFT test setup

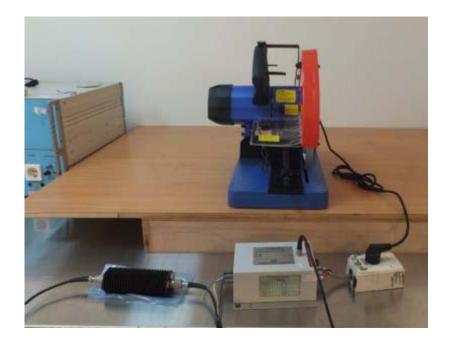


Figure 7 Conducted RF disturbances immunity test setup