No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

This report will not be used for social proof function in China market.

Test report No: 6018733.50

TEST REPORT

Electromagnetic Compatibility (EMC)

Identification of item tested	Metal Cutting Circular Saw
Trademark	AGP
Model and /or type reference	CS200; HDC 8200; CS230N; CM230; CM230K; HDC 8230N; HKS230
Ratings	CS200; HDC 8200: 220-240 V; 50-60 Hz; 1700 W; n₀: 3700 min⁻¹; Ø200 mm; Class II CS230N; CM230; CM230K; HDC 8230N; HKS230: 220-240 V; 50-60 Hz; 1700 W; n₀: 2200 min⁻¹; Ø230 mm; Class II
Test Laboratory / address	DEKRA Testing and Certification (Shanghai) Ltd.
Applicant / address	LEE YEONG INDUSTRIAL CO., LTD. No.2, Kejia Rd., Douliu City, Yunlin County 64057, Taiwan
Test method requested, standard	EN 55014-1:2017; EN 55014-2:2015; EN 61000-3-2:2014; EN 61000-3-3:2013
Verdict Summary	IN COMPLIANCE
Tested by	Kaiyuan Dai (Project Engineer) Kaiyuan Dai
Approved by	Zuyao Fan (Project Manager) Zuyaw. Fan
Date of issue	2020-04-23
Report template No	TRF_EN55014-1_EN55014-2_EMC02 V1.0

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

INDEX

			page
Con	npeten	ces and Guarantees	4
Ger	neral co	onditions	4
Und	ertaint	y	5
Env	ironme	ental conditions	5
Pos	sible te	est case verdicts	6
Defi	nition (of symbols used in this test report	6
Abb	reviation	ons	6
Doc	ument	History	7
Ren	narks a	and Comments	7
1	Gene	eral Information	8
	1.1	General Description of the Item(s)	8
	1.2	Environment	10
	1.3	Test Location	10
	1.4	Classification according to EN 55014-2	11
2	Desc	cription of Test Setup	12
	2.1	Operating mode(s) used for tests	12
	2.2	Port(s) of the EUT	12
	2.3	Support / Auxiliary equipment / unit / software for the EUT	12
	2.4	Test Configuration / Block diagram used for tests	13
3	Verd	ict summary section	14
	3.1	Standards	14
	3.2	Deviation(s) from the Standard(s) / Test Specification(s)	14
	3.3	Overview of results	15
4	Emis	ssion Test Results	16
	4.1	Conducted disturbance voltage – Mains	16
	4.2	Conducted disturbance voltage– Load terminals	21
	4.3	Conducted disturbance voltage- Additional terminals	22
	4.4	Disturbance power (30 MHz – 300 MHz)	23
	4.5	Radiated electromagnetic disturbances (30 – 1000 MHz)	26
	4.6	Discontinuous disturbance (clicks) on AC power leads	27
	4.7	Harmonic current emissions	28
	4.8	Voltage changes, voltage fluctuations and flicker	31
5	lmm	unity Test Results	33
	5.1	Performance (Compliance) criteria	33

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

		5.1.1 Performance criteria related to immunity tests	. 33
		5.1.2 Manufacturer defined performance criteria	. 33
	5.2	Monitored – Checked Functions / Parameters	. 34
	5.3	Electrostatic discharge immunity	. 35
	5.4	Radio-frequency electromagnetic fields immunity	. 36
	5.5	Electrical Fast Transients immunity	. 37
	5.6	Surge transient immunity	. 38
	5.7	Injected currents (RF common mode) immunity	. 39
	5.8	Power supply interruptions and dips immunity	40
6	Identi	fication of the Equipment Under Test	. 41
7	Meas	urement Uncertainties	42
8	Used	Equipment	. 43
2	Toot I	Photos	11

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

COMPETENCES AND GUARANTEES

DEKRA is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA has a calibration and maintenance program for its measurement equipment.

DEKRA guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated in the report and it is based on the knowledge and technical facilities available at DEKRA at the time of performance of the test.

DEKRA is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA.

GENERAL CONDITIONS

- 1. This report is only referred to the item that has undergone the test.
- 2. This report does not constitute or imply on its own an approval of the product by the Certification Bodies or Competent Authorities.
- 3. This document is only valid if complete; no partial reproduction can be made without previous written permission of DEKRA.
- 4. This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written permission of DEKRA.
- 5. The information provided by the customer in this report may affect the validity of the results, the test lab is not responsible for it.
- 6. The test results presented in this report relate only to the object tested.

Report no.: 6018733.50 Page 4 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

UNCERTAINTY

For all measurements where guidance for the calculation of the instrumentation uncertainty of a measurement is specified in EN 55016-4-2 (CISPR 16-4-2), EN/IEC 61000-4 series or a product standard, the measurement instrumentation uncertainty has been calculated and applied in accordance with these standards.

Uncertainties have been calculated according to the DEKRA internal document. The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

ENVIRONMENTAL CONDITIONS

The climatic conditions during the tests are within the limits specified by the manufacturer for the operation of the EUT and the test equipment. The climatic conditions during the tests were within the following limits:

Ambient temperature	15 °C – 35 °C
Relative Humidity air	30% - 60%
Atmospheric pressure	86 kPa – 106 kPa

If explicitly required in the basic standard or applied product / product family standard the climatic values are recorded and documented separately in this test report.

Report no.: 6018733.50 Page 5 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

POSSIBLE TEST CASE VERDICTS

Test case does not apply to test object	N/A
Test object does meet requirement	P (Pass) / PASS
Test object does not meet requirement	F (Fail) / FAIL
Not measured	N/M

DEFINITION OF SYMBOLS USED IN THIS TEST REPORT

☑ Indicates that the listed condition, standard or equipment is applicable for this report/test/EUT.					
☐ Indicates that the listed condition, standard or equipment is not applicable for this report/test/EUT.					
Decimal separator used in this report	\boxtimes	Comma (,)		Point (.)	

ABBREVIATIONS

For the purposes of the present document, the following abbreviations apply:

EUT : Equipment Under Test

QP : Quasi-Peak
CAV : CISPR Average

AV : Average

CDN : Coupling Decoupling Network SAC : Semi-Anechoic Chamber

OATS : Open Area Test Site

BW: Bandwidth

AM : Amplitude Modulation
PM : Pulse Modulation

HCP : Horizontal Coupling PlaneVCP : Vertical Coupling Plane

U_N : Nominal voltage

Report no.: 6018733.50 Page 6 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

DOCUMENT HISTORY

Report nr.	Date	Description
6018733.50	2020-04-23	First release

REMARKS AND COMMENTS

The equipment under test (EUT) does meet the requirements of the stated standard(s)/test(s).

The test results relate only to the samples tested.

According to the declaration from manufacturer,

CS230N and CS200 share the same construction and components except that the size of the guarding system and gear of them are different.

CS230N and CS200 can be only used for cutting metal or similar materials.

CS200 and HDC 8200 are identical. CS230N; CM230; CM230K; HDC 8230N and HKS230 are identical.

Therefore, model CS230N was selected for the full test and the result is also representative for all models as well.

Report no.: 6018733.50 Page 7 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

1 **GENERAL INFORMATION**

1.1 General Description of the Item(s)

Descri	ption of the item:	Metal Cutting Circular Saw			
Model	/ Type number:	CS230N			
Repres	sentative Types:	CS200; HDC 8200; CM230; CM230K; HDC 8230N; HKS230			
Trader	mark:	AGP			
Manufa	acturer:	LEE YEONG INDUSTRIAL CO., I	_TD.		
		No.2, Kejia Rd., Douliu City, Yunli	n County 64057, Tai	wan	
Factor	y:	LEE YEONG INDUSTRIAL CO., I			
		No.2, Kejia Rd., Douliu City, Yunli	n County 64057, Tai	wan	
Rated	Power:	CS200; HDC 8200:			
		220-240 V; 50-60 Hz; 1700 W; n ₀ :	3700 min⁻¹; Ø200 m	nm; Class II	
		CS230N; CM230; CM230K; HDC	8230N; HKS230:		
		220-240 V; 50-60 Hz; 1700 W; n ₀ :	2200 min⁻¹; Ø230 m	nm; Class II	
	Clock frequencies				
	parameters:	N/A			
Mounting position:		☐ Table top equipment			
		☐ Wall/Ceiling mounted equipment☐ Floor standing equipment			
		Hand-held equipment			
		Other:			
	Culti-				
Intende	ed use of the Equipment Under	Test (EUT)			
N/A		,			
No	No Module/parts of test item		Туре	Manufacturer	
N/A					
No	No Documents as provided by the applicant – Description		File name	Issue date	
	N/A				
	L		ı	<u> </u>	

Report no.: 6018733.50 Page 8 / 44

Copy of marking plate:

Metal Cutting Circular Saw Model: CS230N

220-240V~50-60Hz 1700W

n_o=2200 min⁻¹ Blade: Ø 230mm (9") Depth of Cut: 80mm

- Warning: Hands Should Never Be Placed Under The Shoe Or Guard Of The Saw.
- Warning: When Operating The Saw, Never Over-reach, And Ensure That A Firm
 Footing And Proper Balance Is Kept At All Times.

 Warning: Ensure The Retracting Lower Guard Does Not Stick In The Open Position.
- Warning: Ensure The Saw Does Not Vibrate Or Seem Unsafe In Any Way While In
- Use. If The Saw Is Unsafe Tag It, And Remove From Serviec.

 Caution: All Electrical Power Cords Should Be Kept Clear Of The Cutting Area. Do Not Expose To Rain Or Use In Damp Locations.

No.:

2019/01

LEE YEONG INDUSTRIAL CO., LTD. No.2, Kejia Rd., Douliu, 64057 Taiwan

Metal Cutting Circular Saw Model: CS200

220-240V~ 50-60Hz 1700W

n_o= 3700 min⁻¹ Blade: Ø 200mm (8") Depth of Cut: 67mm

- Warning: Hands Should Never Be Placed Under The Shoe Or Guard Of The Saw.
 Warning: When Operating The Saw, Never Over-reach, And Ensure That A Firm Footing And Proper Balance Is Kept At All Times.
- Warning: Ensure The Retracting Lower Guard Does Not Stick In The Open Position.
- Warning: Ensure The Saw Does Not Vibrate Or Seem Unsafe In Any Way While In
- Use. If The Saw Is Unsafe Tag It, And Remove From Serviec.

 Caution: All Electrical Power Cords Should Be Kept Clear Of The Cutting Area. Do Not Expose To Rain Or Use In Damp Locations.

No.:

2019/01

LEE YEONG INDUSTRIAL CO., LTD. No.2, Kejia Rd., Douliu, 64057 Taiwan

Report no.: 6018733.50 Page 9 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

1.2 **Environment**

The requirements and standards apply to equipment intended for use in:

\boxtimes	Residential (domestic) environment.
\boxtimes	Commercial and light-industrial environment.
	Industrial environment.

1.3 Test Location

Location	DEKRA Testing and Certification Co.,Ltd.		
Address No.372-2, Sec. 4, Zhongxing Rd., Zhudong Township, Hsinchu Co 31061, Taiwan, R.O.C			
Date	Jan. 2019		
Supervised by	Kaiyuan Dai		

Report no.: 6018733.50 Page 10 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

1.4 Classification according to EN 55014-2

The standard EN 55014-2 is subdivided in four categories. For each category, specific immunity requirements are formulated.

	Category I: Apparatus containing no electronic control circuitry.
\boxtimes	<u>Examples:</u> Motor operated appliances, lighting toys, track sets without electronic control units, tools, heating appliances, UV and IR radiators and apparatus containing components such as electromechanical switches and thermostats.
	Electric circuits consisting of passive components (such as radio interference suppression capacitors or inductors, mains transformers and mains frequency rectifiers) are not considered to be electronic control circuitry.
	<u>Category II:</u> Transformer toys, dual supply toys, mains powered motor operated appliances, tools, heating appliances and similar electric apparatus (for example – UV radiators, IR radiators and microwave ovens) containing electronic control circuitry with no internal clock frequency or oscillator frequency higher than 15 MHz.
	<u>Category III:</u> Battery powered apparatus (with built-in batteries or external batteries), which in normal use is not connected to the mains, containing an electronic control circuitry with no internal clock frequency or oscillator frequency higher than 15 MHz.
	Category IV: All other apparatus covered by the scope of the EN 55014-2 standard.
	equency: Fundamental frequency of any signal used in the device, excluding those which are solely de integrated circuits (IC).

Report no.: 6018733.50 Page 11 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

2 **DESCRIPTION OF TEST SETUP**

2.1 Operating mode(s) used for tests

During the tests the following operating mode(s) has(have) been used.

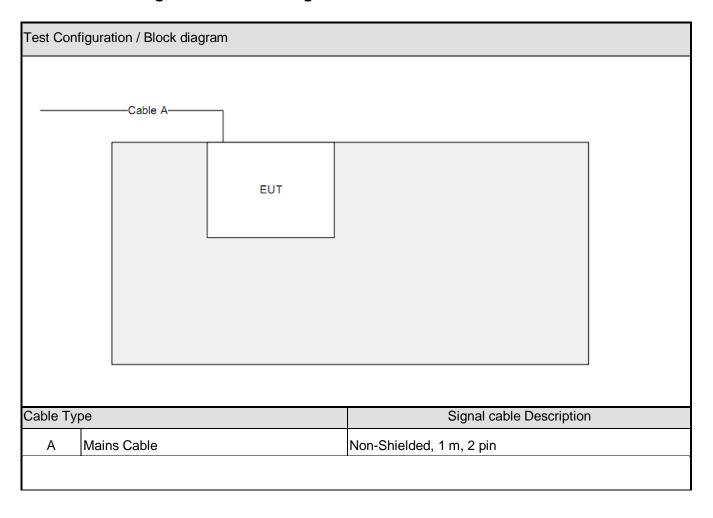
Operating mode	Operating mode description	Used for testing		
	Operating mode description	Emission	Immunity	
1	Normal operation	\boxtimes		
2				
3				
4				
5				
6				
Supplemental information:				

2.2 Port(s) of the EUT

	Connected to /		Cable	
Port name and description	Termination	Length used during test [m]	Attached during test	Shielded
N/A				
Supplemental information:				

2.3 Support / Auxiliary equipment / unit / software for the EUT

The EUT has been tested with the following auxiliary equipment / unit / software:


Auxiliary equipment / unit / software	Type / Version	Manufacturer	Supplied by				
N/A							
Supplemental information:							

Report no.: 6018733.50 Page 12 / 44

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

2.4 Test Configuration / Block diagram used for tests

Report no.: 6018733.50 Page 13 / 44

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

3 **VERDICT SUMMARY SECTION**

This chapter presents an overview of standards and results. Refer to the next chapters for details of measured test results and applied test levels.

3.1 **Standards**

Standard	Year	Description
EN 55014-1	2017 1)	Requirements for household appliances, electric tools and similar apparatus – Part 1: Emission.
EN 55016-2-1	2014	Methods of measurement of disturbances and immunity – Conducted disturbance measurements.
EN 55016-2-2	2010	Methods of measurement of disturbances and immunity – Measurement of disturbance power.
EN 55016-2-3	2010	Methods of measurement of disturbances and immunity – Radiated disturbance
+A1	2010	measurements.
+A2	2014	
EN 61000-3-2	2014	Limits for harmonic current emissions (equipment input current ≤ 16 A per
		phase).
EN 61000-3-3	2013	Limitation of voltage fluctuations and flicker
EN 55014-2	2015 ¹⁾	Requirements for household appliances, electric tools and similar apparatus –
		Part 2: Immunity – Product family standard.
EN 61000-4-2	2009	Electrostatic discharge immunity test.
EN 61000-4-3	2006	Radiated, radio-frequency, electromagnetic field immunity test.
+A1	2008	
+A2	2010	
EN 61000-4-4	2012	Electrical fast transient/burst immunity test.
EN 61000-4-5	2014	Surge immunity test.
EN 61000-4-6	2014	Immunity to conducted disturbances, induced by radio-frequency fields.
EN 61000-4-11	2004	Voltage dips, short interruptions and voltage variations immunity tests.

50) Not harmonized yet.

3.2 Deviation(s) from the Standard(s) / Test Specification(s)

No deviation.

Report no.: 6018733.50 Page 14 / 44

3.3 Overview of results

EMISSION TESTS -	EN 55014-1		
Requirement – Test case	Basic standard(s)	Verdict	Remark
Conducted disturbance voltage at mains terminals (150 KHz – 30 MHz)	EN 55016-2-1	PASS	
Conducted disturbance voltage at load terminals (150 KHz – 30 MHz)	EN 55016-2-1	N/A	
Conducted disturbance voltage at additional terminals (150 KHz – 30 MHz)	EN 55016-2-1	N/A	
Disturbance power (30 MHz to 300 MHz)	EN 55016-2-2	PASS	See 2)
Radiated electromagnetic disturbances (30 – 1000 MHz)	EN 55016-2-3	N/A	
Discontinuous disturbance (clicks) on AC power leads	EN 55014-1	N/A	See 1)

Supplementary information:

- 1) Exemptions from click measurements applicable (clause 4.2.3).
- 2) According to clause 4.1.2.3.2 procedure (a) of the EN 55014-1 standard the EUT is deemed to comply in the frequency range from 300 MHz to 1000 MHz without further measurements.

EMISSION TESTS – EN	61000-3-2, EN 61000-3-3		
Requirement – Test case	Basic standard(s)	Verdict	Remark
Harmonic current emissions	EN 61000-3-2	PASS	
Voltage changes, voltage fluctuations and flicker	EN 61000-3-3	PASS	
Supplementary information:			

IMMUNITY TESTS – EN 55014-2						
Requirement – Test case	Basic standard(s)	Verdict	Remark			
Electrostatic discharge	EN 61000-4-2	N/A	See 1)			
Radio-frequency electromagnetic fields	EN 61000-4-3	N/A	See 1)			
Fast transients	EN 61000-4-4	N/A	See 1)			
Surge transient	EN 61000-4-5	N/A	See 1)			
Injected currents (radio-frequency common mode)	EN 61000-4-6	N/A	See 1)			
Voltage dips and short interruptions	EN 61000-4-11	N/A	See 1)			
	, L					

Supplementary information:

1) The equipment is classified as category 1 equipment according to EN 55014-2; no immunity tests are applicable.

Report no.: 6018733.50 Page 15 / 44

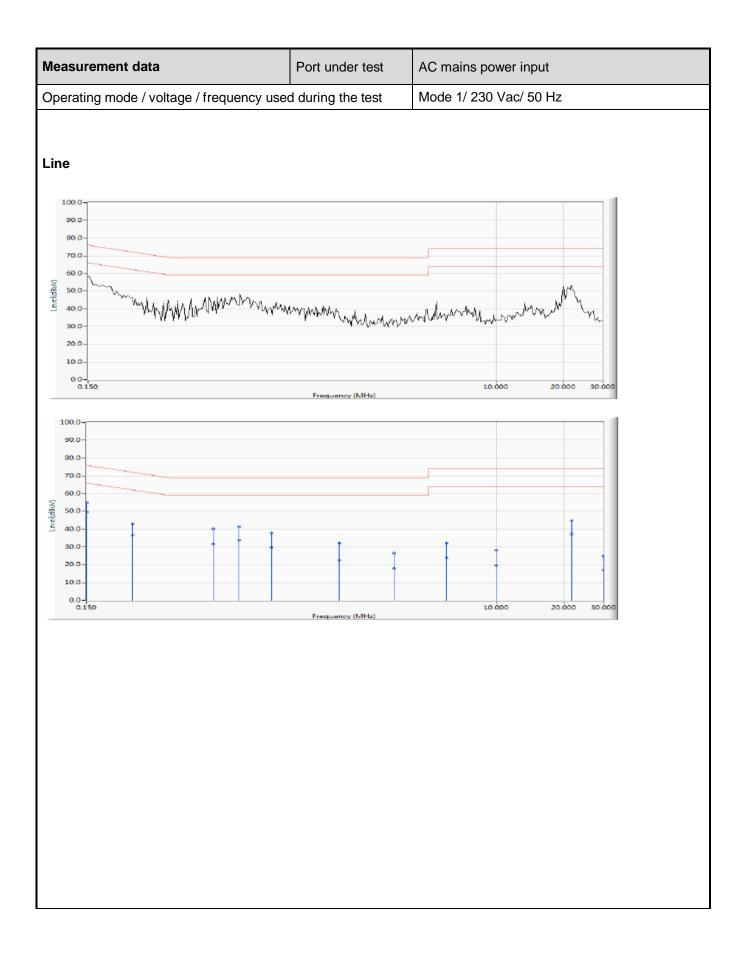
No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

4.1

PASS

VERDICT:


4 EMISSION TEST RESULTS

Conducted disturbance voltage - Mains

Standard	EN 5	5014-1						
Basic standard	EN 5	5016-2-1						
Limits – Tools								
Frequency range [MHz]	Liı	mit: QP [dB(μV) ^{1]}]	Lir	mit: A	V [dB(μV) ^{1]}]	IF BW	Detector(s)	
0,15 - 0,35		66 – 56 ²⁾		59	- 46 ²⁾	9 KHz	QP, CAV	
0,35 - 5,0		56		46		9 KHz	QP, CAV	
5,0 - 30		60		50		9 KHz	QP, CAV	
1) At the transition frequency, the lower 2) The limit decreases linearly with the		•						
Rated power below 70	0 W		Limi	ts as	above			
☐ Rated power between	700 ar	nd 1000 W	Limi	ts +4	dB			
Rated power above 10	00 W		Limi	ts +10) dB			
Performed measurements								
Scan range (0,9 – 1,1 <i>U</i> _N)		198 – 264 V _{AC}			207 – 253 VA	vc 🛛	230 V _{AC}	
Tested terminal(s) / port	\boxtimes	AC mains input pow	/er	\boxtimes	N 🗵	L1 🔲 l	_2	
	□ DC mains input power □ Positive (+) □ Negative (Negative (-)			
Voltage – Mains [V]	230 \	/ac						
Frequency – Mains [Hz]	50 H	Z						
Test method applied								
	☐ Voltage probe							
Test setup	\boxtimes	Table top		\boxtimes				
		Floor standing		Other:				
	Refe	r to the Annex 3 for te	est se	tup ph	noto(s).			
Operating mode(s) used	Mode	e 1						
Remark								
	1							

Report no.: 6018733.50 Page 16 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

Remark

	rement data		Port ur	nder test	AC mains	power inpu	ut
	Frequency (MHz)	Correct Factor (dB)	Reading Level	Measure Level	Margin (dB)	Limit (dBuV)	Detector Type
1	0.150	9.680	45.350	55.030		76.000	QUASIPEAK
2	* 0.150	9.680	39.800	49.480		69.000	AVERAGE
3	0.240	9.680	33.140	42.820		72.117	QUASIPEAK
4	0.240	9.680	26.930	36.610	-26.843	63.453	AVERAGE
5	0.550	9.693	30.590	40.282	-28.718	69.000	QUASIPEAK
6	0.550	9.693	21.990	31.682	-27.318	59.000	AVERAGE
7	0.716	9.728	31.630	41.358	-27.642	69.000	QUASIPEAK
8	0.716	9.728	24.130	33.858	-25.142	59.000	AVERAGE
9	1.000	9.790	28.000	37.790	-31.210	69.000	QUASIPEAK
10	1.000	9.790	20.020	29.810	-29.190	59.000	AVERAGE
11	2.000	9.800	22.260	32.060	-36.940	69.000	QUASIPEAK
12	2.000	9.800	12.690	22.490	-36.510	59.000	AVERAGE
13	3.500	9.807	16.730	26.537	-42.463	69.000	QUASIPEAK
14	3.500	9.807	8.140	17.947	-41.053	59.000	AVERAGE
15	6.000	9.877	22.390	32.267	-41.733	74.000	QUASIPEAK
16	6.000	9.877	14.060	23.937	-40.063	64.000	AVERAGE
17	10.000	10.090	18.140	28.230	-45.770	74.000	QUASIPEAK
18	10.000	10.090	9.470	19.560	-44.440	64.000	AVERAGE
19	21.673	10.422	34.380	44.802	-29.198	74.000	QUASIPEAK
20	21.673	10.422	26.920	37.342	-26.658	64.000	AVERAGE
21	30.000	10.580	14.300	24.880	-49.120	74.000	QUASIPEAK
22	30.000	10.580	6.350	16.930	-47.070	64.000	AVERAGE

Report no.: 6018733.50 Page 18 / 44

Neutral Neu	Neutral 100 0 80 0 80 0 90 0 80 0 90	Neutral 100 0 90 0 90 0 90 0 90 0 90 0 90 0 10 0 90	Measurement data	Port under test	AC mains power input
100.0 90.0 80.0 70.0 10.0 90.0 90.0 90.0 90.0 90.0 90.0 9	100 0 90 0 90 0 90 0 90 0 90 0 90 0 90	100 0 90 0 90 0 90 0 90 0 90 0 90 0 90	Operating mode / voltage / frequency used	I during the test	Mode 1/ 230 Vac/ 50 Hz
90.0 80.0 10.0 20.0 10.0 90.0 80.0 90.0	90.0 80.0 70.0 90.0 90.0 90.0 90.0 90.0 90.0 9	99.0 90.0	Neutral		
100.0 90.0 80.0 70.0 60.0 60.0 20.0 10.0 0.0 10.00 20.00 30.00 20.00 30.00	100.0 90.0 80.0 70.0 60.0 60.0 20.0 10.0 0.0 10.0 0.0 10.0 0.0 0.	100.0 90.0 80.0 70.0 60.0 60.0 20.0 10.0 0.0 10.0 0.0 10.0 0.0 0.	90.0- 80.0- 70.0- 60.0- 40.0- 30.0- 20.0- 10.0- 0.0-		
90.0 80.0 70.0 60.0 30.0 10.0 0.0 10.00 20.00 30.000	90.0- 80.0- 70.0- 60.0- 30.0- 20.0- 10.0- 0.150	90.0 80.0 70.0 60.0 30.0 20.0 10.00 20.00 10.00 20.00 10.00 20.00 30.000		Frequency (MHz)	
			90.0- 80.0- 70.0- 60.0- 60.0- 30.0- 20.0- 10.0- 0.0-	Frequency (MHz)	10.000 20.000 30.000
			0.150	Frequency (MHz)	10.000 20.000 30.000

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

Remark

leasu	rement data		Port ur	nder test	AC mains	power inp	ut
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBuV)	Measure Level (dBuV)	Margin (dB)	Limit (dBuV)	Detector Type
1	0.154	9.681	45.110	54.791	-20.992	75.783	QUASIPEAK
2	* 0.154	9.681	39.200	48.881	-19.809	68.689	AVERAGE
3	0.177	9.680	41.740	51.420	-23.213	74.633	QUASIPEAK
4	0.177	9.680	36.010	45.690	-21.357	67.047	AVERAGE
5	0.220	9.680	35.880	45.560	-27.276	72.836	QUASIPEAK
6	0.220	9.680	29.790	39.470	-25.010	64.480	AVERAGE
7	0.550	9.693	31.750	41.442	-27.558	69.000	QUASIPEAK
8	0.550	9.693	23.140	32.832	-26.168	59.000	AVERAGE
9	0.611	9.706	32.820	42.526	-26.474	69.000	QUASIPEAK
10	0.611	9.706	24.570	34.276	-24.724	59.000	AVERAGE
11	1.021	9.790	28.390	38.180	-30.820	69.000	QUASIPEAK
12	1.021	9.790	20.660	30.450	-28.550	59.000	AVERAGE
13	2.000	9.800	23.210	33.010	-35.990	69.000	QUASIPEAK
14	2.000	9.800	13.240	23.040	-35.960	59.000	AVERAGE
15	3.500	9.815	17.000	26.815	-42.185	69.000	QUASIPEAK
16	3.500	9.815	8.820	18.635	-40.365	59.000	AVERAGE
17	6.000	9.880	22.050	31.930	-42.070	74.000	QUASIPEAK
18	6.000	9.880	14.200	24.080	-39.920	64.000	AVERAGE
19	10.000	10.080	19.170	29.250	-44.750	74.000	QUASIPEAK
20	10.000	10.080	10.490	20.570	-43.430	64.000	AVERAGE
21	21.802	10.358	34.960	45.318	-28.682	74.000	QUASIPEAK
22	21.802	10.358	27.320	37.678	-26.322	64.000	AVERAGE
23	30.000	10.450	12.870	23.320	-50.680	74.000	QUASIPEAK
24	30.000	10.450	5.300	15.750	-48.250	64.000	AVERAGE

Report no.: 6018733.50 Page 20 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

4.2 Conducted distu	ırbance voltage– Load terminals	VERDICT:	N/A
Standard	EN 55014-1		

EN 55016-2-1

Limits

Basic standard

Frequency range [MHz]	Limit: QP [dB(μ V) ^{1]}]	Limit: AV [dB(μV) ^{1]}]	IF BW	Detector(s)
0,15 - 0,50	80	70	9 KHz	QP, CAV
5,0 - 30	74	64	9 KHz	QP, CAV
1) At the transition frequency, the lower	limit applies.			

Performed measurements

Port(s) / Terminal(s) under tes	ŧ						
	(please write the name of	of the p	ort under test)		Other:			
	Other:				Other:			
				•				
Volta	age Mains [V]	(Plea	se write the voltage/\	/oltage	s used for testing)			
Freq	uency – Mains [Hz]	(Plea	se write the frequenc	y/frequ	uencies used for testing)			
		,						
Test	method applied		Voltage probe					
			ISN - Impedance Stabilisation Network					
			CDN according to E	N/IE	C 61000-4-6			
			Current probe					
			Artificial mains network					
Test	setup		Table top		Artificial hand applied			
			Floor standing		Other:			
		Refe	r to the Annex 3 for to	est setu	up photo(s).			
Oper	ating mode(s) used	Pleas	se write the operating	mode	(s) used during testing			
Rem	ark							

Report no.: 6018733.50 Page 21 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

4.3 Conducted distu	rbance voltage- Additional terminals	VERDICT:	N/A
Standard	EN 55014-1		
Basic standard	EN 55016-2-1		

Limits

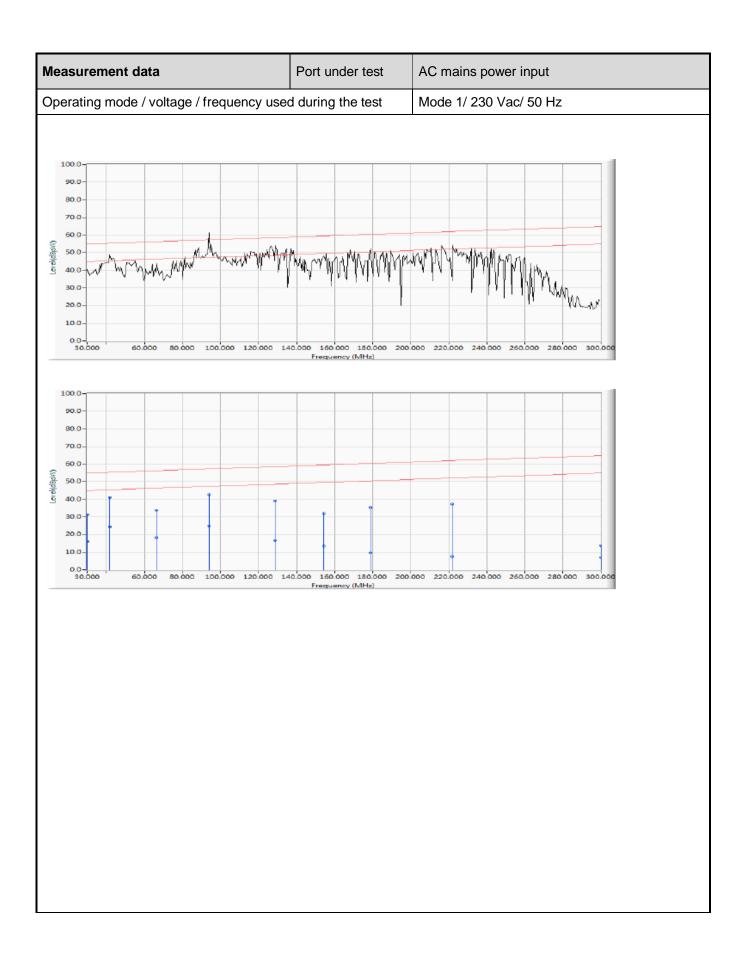
Frequency range [MHz]	Limit: QP [dB(μ V) ^{1]}]	Limit: AV [dB(μV) ^{1]}]	IF BW	Detector(s)
0,15 - 0,50	80	70	9 KHz	QP, CAV
5,0 - 30	74	64	9 KHz	QP, CAV
1) At the transition frequency, the lower	limit applies.			

Performed measurements

Port(s) / Terminal(s) under tes	ŧ							
	(please write the name of	of the p	ort under test)		Other:				
	Other:				Other:				
Volta	ige Mains [V]	(Plea	se write the voltage/\	/voltages used for testing)					
Freq	uency – Mains [Hz]	(Plea	se write the frequenc	cy/frequencies used for testing)					
Test	method applied		CDN according to EN / IEC 61000-4-6						
			ISN – Impedance Stabilisation Network						
			Voltage probe						
₽			Current probe						
			Artificial mains network						
			Other:						
Test	setup		Table top		Artificial hand applied				
			Floor standing		Other:				
		Refe	r to the Annex 3 for to	st setu	ир photo(s).				
Oper	rating mode(s) used	Pleas	se write the operating	mode	(s) used during testing				
Rem	ark								
	•								

Report no.: 6018733.50 Page 22 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China


TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

4.4	Disturbance pov	ver (3	0 MH	lz – 300 MHz))			V	ERDIC	Γ: PASS
Star	ndard	EN 5	5014-1	1						
Bas	ic standard	EN 5	5016-2	2-2						
Limit	s – Tools									
Fred	quency range [MHz]	Limit	: QP [c	dB(pW)]	Limit: A	AV [dB(p	oW)]		IF BW	Detector(s)
	30 - 300		45 –	· 55 ¹⁾	35	5 –	45 ¹⁾	1:	20 KHz	QP, CAV
		1		Margin)					
	200 - 300		0 –	· 10 ¹)		-		12	20 KHz	QP, CAV
1) The	e limit increases linearly with the	frequenc	y.							
	Rated power below 70	0 W						Lim	its as abo	ove
	Rated power between	700 ar	nd 100	0 W				Lim	its +4 dB	
\boxtimes	Rated power above 10	00 W						Lim	its +10 dl	3
Perfc	ormed measurements									
Port	(s) under test									
	AC mains input power			Load				Conti	rol	
	Other:			Other:				Othe	r:	
Sca	n range (0,9 – 1,1 <i>U</i> _N)		198 -	- 264 V _{AC}		207 -	- 253 \	/ _{AC}		30 V _{AC}
Volt	age – Mains [V]	230 \	/ac						l l	
Fred	quency – Mains [Hz]	50 H	Z							
Test	t setup		Table	e top	Тп	Floor	stand	ina		
			Othe	<u>'</u>		1		9		
				Annex 3 for tes	t setup r	hoto(s)				
	ditions for exemption			ts" reduced by "I		` '		ssed		
	n measurements above MHz		-	mum clock frequ						
		Mode		'						
	erating mode(s) used									
LACII	Iair									

Report no.: 6018733.50 Page 23 / 44

Report no.: 6018733.50 Page 24 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

Remark

Report no.: 6018733.50 Page 25 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

Standard	EN 55014-1
Basic standard	EN 55016-2-3
Test method	Antenna method according to EN 55016-2-3 standard.

Limits

Frequency	L	imit: QP [dB(μV/m) ¹⁾]		IF BW	Detector
[MHz]	@3 m.	@5 m.	@10 m.	IL DAA	Detector
30 - 230	40	36	30	120 KHz	QP
230 - 1000	47	43	37	120 KHz	QP
1) At the transition frequency, t	he lower limit applies.			•	

Performed measurements

Port under test	Enclo	Enclosure						
Voltage Mains [V]	(Pleas	(Please write the voltage/voltages used for testing)						
Frequency - Mains [Hz]	(Pleas	se write the frequency/frequencies used for testing)						
Test method applied	\square	OATS or SAC with measurement distance [m]: 3 m.						
		OATS or SAC with measurement distance [m]: 5 m.						
	\Box	OATS or SAC with measurement distance [m]: 10 m.						
Test setup	\square	Equipment on a table of 80 cm height						
	Equipment on the floor (insulated from ground plane)							
	Other:							
	Refer	to the Annex 3 for test setup photo(s).						
Operating mode(s) used	Place	e write the operating mode(s) used during testing						
	1 1005	e write the operating mode(o) doed during testing						
Remark								

Report no.: 6018733.50 Page 26 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

Supplementary information:

4.6 Discontinuous disturbance (clicks) on AC power leads **VERDICT:** N/A Standard EN 55014-1 IF BW Frequency [MHz] Limit: QP [dB(μV)] Detector 9 KHz Quasi-Peak (QP) 0,15 66 0,50 9 KHz Quasi-Peak (QP) 56 1,40 56 9 KHz Quasi-Peak (QP) 30.0 60 9 KHz Quasi-Peak (QP) Performed measurements Scan range (0,9 - 1,1 UN) 198 - 264 VAC 207 253 V_{AC} V_{AC} Voltage - Mains [V] 264 Vac 50 Hz Frequency - Mains [Hz] Test method applied \bowtie Artificial mains network Voltage probe Test setup X Table top Floor standing Other: Operating mode(s) used Mode 1 Remark Reason for not The amplitudes of the observed disturbances were all below the limit for continuous disturbance, these are not considered to be clicks. performing the test \square \square Measurement results **Neutral** Line 1 Line 2 \Box Line 3 First Measurement: Determination of the limit L_{q-} - Quasi-peak Frequency Limit L Number of Number of Number of Time of Click Increased Increased (MHz) (dBµV) short clicks long clicks clicks meas. (min.) rate N limit (dB) Limit Lq 0,150 0 2 66 0 0.5 56 θ 0 θ 2 1.4 56 0 0 0 2 30 60 0 0 θ The calculated click rate N is not more than 5 times per minute and all the clicks are classified as short (t ≤ 10 ms). Thus, the EUT is deemed to comply with the limits without any further measurement at an increased limit. Second measurement with Limit = L_q (Upper quartile method): **Frequency** Limit La Number of clicks (MHz) Verdict Number of authorized clicks N2 ≤N1/4 (dBuV) $-N_2$ 0,15 0,5 1.4 30

Report no.: 6018733.50 Page 27 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

4.7	Harmonic cur	rent er	nissions				VERDICT:	PASS
Standar	rd	EN 610	000-3-2					
Exlusio	ns		Arc welding equ	uipment	t intended for prof	fessional	use.	
	ese categories of		System(s) with	nomina	ıl voltage(s) less t	han 220 '	V _{AC} (line-to-neu	tral).
	ent, limits are not ed in the EN 61000-		Equipment with	rated p	ower of ≤ 75 W (other thai	n lighting equip	ment).
3-2 star	ndard)		Professional ed	Juipmer	nt with total rated	power > 1	1 kW.	
			Symmetrically of	controlle	ed heating eleme	nts with a	rated power ≥	200 W.
			Independent di	mmers	for incandescent	lamps wit	h rated power :	≤ 1 kW.
		•						
Classific	cation							
\boxtimes	Class A	All app	aratus not classi	fied as	Class B, C or D			
	Class B	Portab	le tools					
			Lighting equipm	nent wit	h active input pov	ver > 25 \	N	
	Class C		Lighting equipm (First requireme		h active input pov ble 3 column 2)	ver ≤ 25 V	V	
			Lighting equipm	nent wit	h active input pov	ver ≤ 25 V	V (Second requ	uirement)
	Class D	Person	nal computers, te	levision	receivers			
Perform	ed measurements							
Port un	der test	AC ma	ins power input					
Voltage	– Mains [V]	230 Va	ac					
Freque	ncy – Mains [Hz]	50 Hz						
Observa	ation peroid		6.5 min.	\boxtimes	2.5 min.		Other:	
	of measurement	\boxtimes	EN 61000-4-7:2	2002 +	AM1:2009 (IEC 6	1000-4-7	:2002+AM1:20)8)
	ent standard used C61000-4-7 (Cl. 7)		EN 61000-4-7:	1991				
Control	principle used in	\boxtimes	Comply with the	e requir	ements of the Cla	ause 6.1 (EN / IEC 61000)-3-2).
the EU			Not comply with	n the re	quirements of the	Clause 6	6.1 (EN / IEC 6	1000-3-2).
Operati	ng mode(s) used	Mode	1					
Remark	. ,	545	<u>- </u>					

Report no.: 6018733.50 Page 28 / 44

250% 200% 150% Class A 100% 50% 0.0% 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 25.00A U=100% 12.50A U=100%	leasurement data		Port under test	AC mains power in	iput
250% 200% 150% Class A 100% 50% 0.0% 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 25.00A U=100% 12.50A U=100%	perating mode / voltage / fr	Mode 1/ 230 Vac/	50 Hz		
200% 150% Class A 100% 50% 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 25.00A U=100% 12.50A U=100%	/S620				
	3 5 7 9 11 13 ms	15 17 19 21 10ms	1 23 25 27 29 s	31 33 35 37 39 20n	200%
			V INC = U.	V-nom	n: 230 V
IIIIS = 3.013 A DI = 0.373	•		mpleted, Result: PAS	TestTime	: 5 min (100%)

Report no.: 6018733.50 Page 29 / 44

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

Measure	ment data	l		Port	under test	AC ma	ins power i	input		
Urms = Irms = P = THDi =	230.1V 3.613A 810.5W 20.3 %	Freq = Ipk = S = THDu =	49.987 6.348A 831.4VA 0.10 %	Range: cf = pf = Class A	25 A 1.757 0.975					
Test - Tin	ne :	5min	(100 %)							
Test com	pleted, Re	sult: PASS	SED							
Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	Freq. [Hz] 50 100 150 200 250 300 350 400 450 550 600 650 700 750 800 850 900 950 1000 1150 1200 1250 1300 1350 1400 1450 1500 1650 1700 1750 1800 1850 1900 1950	lavg [A] 3.5700 0.0000 0.7235 0.0000 0.0969 0.0007 0.0454 0.0010 0.0404 0.0000 0.0174 0.0249 0.0053 0.0031 0.0000	Irms [A] 3.5233 0.0137 0.7050 0.0122 0.0931 0.0122 0.0305 0.0076 0.0244 0.0107 0.0229 0.0198 0.0183 0.0168 0.0061 0.0137 0.0061 0.0122 0.0046 0.0092 0.0137 0.0092 0.0137 0.0092 0.00137 0.0092 0.0076 0.0046 0.0076 0.0046 0.0076 0.0046 0.0076 0.0046 0.0061	Irms% [%] 97.508 0.3801 19.510 0.3378 2.5760 0.3378 0.8446 0.2111 0.6757 0.2956 0.6334 0.5490 0.5068 0.4645 0.1689 0.3801 0.1689 0.3378 0.1267 0.2534 0.2534 0.2111 0.2534 0.1689 0.2534 0.2111 0.2111 0.3801 0.1689 0.7179 0.1689 0.2111 0.1689 0.7179 0.1689 0.2111 0.1689 0.7179 0.1689 0.1267 0.2111 0.1667 0.1689	Irms%L [%] 1.2716 30.650 2.8388 8.1648 4.0690 3.9633 3.3171 6.1035 5.8050 7.3982 6.9660 10.899 17.415 13.224 15.922 12.682 5.9708 11.597 6.6343 11.393 5.4733 9.3587 17.912 10.173 8.6245 10.986 11.610 9.8334 22.391 8.4093 45.113 8.9518 14.098 9.4944 8.9562 12.546 9.4538 10.579	Imax [A] 3.8101 0.0168 0.8408 0.0153 0.1236 0.0259 0.0641 0.0290 0.0565 0.0122 0.0305 0.0183 0.0259 0.0412 0.0214 0.0275 0.0183 0.0107 0.0168 0.0092 0.0168 0.0137 0.0137 0.0137 0.0137 0.0137 0.0137 0.0137 0.0137 0.0137 0.0137 0.0137 0.0137 0.0137 0.0107 0.0107 0.0107 0.0107 0.0107 0.0107 0.0107 0.0107	Imax% [%] 105.45 0.4645 23.269 0.4223 3.4206 0.7179 1.7736 0.8024 1.5625 0.3378 0.8446 0.5068 0.7179 1.1402 0.5912 0.7601 0.5068 0.2956 0.4645 0.2534 0.4645 0.2534 0.3801 0.9713 0.7601 1.1402 0.9291 0.3378 0.2956 0.2111 0.2956 0.2056 0.2111 0.2956 0.5068 0.2534 0.4645	Imax%L [%] 1.5541 36.555 3.5486 10.842 8.6466 8.3230 12.605 14.114 6.6343 9.2478 11.942 12.352 31.347 14.242 23.883 13.835 10.449 14.174 9.9514 15.666 21.893 26.516 27.864 11.868 15.093 16.479 20.898 45.234 44.781 56.763 58.381 17.904 19.737 11.868 20.898 30.111 18.908 29.093	Limit [A] 1.0800 2.3000 0.4300 1.1400 0.3000 0.7700 0.2300 0.4000 0.1840 0.3300 0.1533 0.2100 0.1533 0.2100 0.1314 0.1500 0.1324 0.1022 0.1184 0.0920 0.1071 0.0836 0.0978 0.0767 0.0900 0.0708 0.0767 0.0900 0.0708 0.0833 0.0657 0.0776 0.0613 0.0726 0.0575 0.0682 0.0541 0.0643 0.0511 0.0608 0.0484 0.0577	Status 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
40	2000	0.0000	0.0061	0.1689	13.269	0.0076	0.2111	16.586	0.0460	0.00
Remark										

Report no.: 6018733.50 Page 30 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

4.8 Voltage changes	s, volta	age fluctuations and f	licker		VERDICT:	PASS
Standard	EN 61	000-3-3				
Limits						
P _{ST} (Short term flicker)		≤ 1	\boxtimes	Not Appli	icable	
P _{LT} (Long term flicker)		≤ 0,65	\boxtimes	Not Appli	icable	
dc (Relative Voltage change)	\boxtimes	≤ 3,3%		Not Appli	icable	
d _{MAX} (Max. voltage change)		≤ 4%		6%		
	\boxtimes	7%		Not Appli	icable	
Supplemental information:						
Performed measurements Reason for not performing the measurement(s)		Tests are not necessary to significant voltage fluctua				ıce
Port under test	AC Ma	ins power input				
Voltage – Mains [V]	230 Va	<u> </u>				
Frequency – Mains [Hz]	50 Hz					
Test method		Flickermeter according E	N/IEC 6	61000-4-15	i:2011	
		Simulation (Clause 4.2.3	of EN / I	EC 61000-	3-3)	
		Analytical method (Clause	e 4.2.4 c	f EN / IEC	61000-3-3)	
		Use of P _{st} = 1 curve (Clau	ıse 4.2.5	of EN / IE	C 61000-3-3)	
Observation peroid		10 min.	min.		Other:	
	\boxtimes	24 times switching accord	ling to A	nnex B		
Operating mode(s) used	Mode	 1				
Remark						

See next page.

Report no.: 6018733.50 Page 31 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

Report no.: 6018733.50

Page 32 / 44

Measurement data	Port under test	AC mains power input
Operating mode used during the test	Mode1/ 230 Vac/	50 Hz

Relative voltage change characteristic dt	0,0
Maximum voltage change d _{MAX}	2,22%
Relative Voltage change dc	0,76%
Short term flicker P _{ST}	0,23
Long term flicker P _{LT}	0,24

Remark

5

IMMUNITY TEST RESULTS

5.1 Performance (Compliance) criteria

[According to EN 55014-2 (CISPR 14-2)]

<u>Performance criteria A:</u> The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer when the apparatus is used as intended. If the minimum performance level or the permissible performance loss is not specified by the manufacturer then either of these may be derived from the product description and documentation and from what the user may reasonably expect from the apparatus if used as intended.

<u>Performance criteria B</u>: The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer when the apparatus is used as intended. During the test, degradation of performance is allowed however no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer then either of these may be derived from the product description and documentation and from what the user may reasonable expect from the apparatus if used as intended.

<u>Performance criteria C</u>: Temporary loss of function is allowed provided the function is self- recoverable or can be restored by the operation of the controls or by any operation specified in the instruction for use.

5.1.1 Performance criteria related to immunity tests

Immunity test	Performance criteria
Electrostatic discharge	В
Radio-frequency electromagnetic fields	A
Fast transients	В
Surge transient	В
Injected currents (radio-frequency common mode)	A
Voltage dips and short interruptions	С

5.1.2 Manufacturer defined performance criteria

Not provided.

Report no.: 6018733.50 Page 33 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

5.2	5.2 Monitored – Checked Functions / Parameters					
During	the immunity tests the following functions of the	ne EU	Γ has/have been monitored/checked.			
	Motor speed		Display data			
	Switching		Data storage			
	Standby mode		Sensor functions			
	Temperature		Audible signals			
	Power consumption		Others : LED's			
	AC mains input current		Others:			
	Timing		Others:			
	Illumination		Others:			
Supp	lementary information :					

Immunity test	Monitored - Checked function(s)/parameter(s) during / after the test	Method
Electrostatic discharge	N/A	
Radio-frequency electromagnetic fields	N/A	
Fast transients	N/A	
Surge transient	N/A	
Injected currents (radio-frequency common mode)	N/A	
Voltage dips and short interruptions	N/A	
Supplementary information :		

Report no.: 6018733.50 Page 34 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

5.3	Electrostatic discharge immunity	VERDICT:	N/A	
-----	----------------------------------	----------	-----	--

Electrostatic discharges (ESD) are the result of persons or objects that accumulate static electricity due to for instance walking on synthetic carpets. The ESD can influence the operation of equipment or damage its electronics, either by a direct discharge or indirectly by coupling or radiation. Both effects are simulated during the tests.

Requirements

Standard	EN 5	EN 55014-2						
Basic standard	EN 6	EN 61000-4-2						
Port under test	Enclo	sure						
Air discharges 1)		±2 kV		±4 kV	\boxtimes	±8 kV		kV
Contact discharges 1)		±2 kV	\boxtimes	±4 kV		±8 kV		kV
Number of discharges	Number of discharges ≥ 10 per polarity with ≥ 1 sec interval.							
1) Tests with lower voltages ar	1) Tests with lower voltages are not required.							

Performed tests

Supplementary information:

Set-up	\boxtimes	Table-top	Floor standing	
Ambient temperature [°C]	23 ° €	}	Relative Humidity air [%]	4 6.1%
Voltage - Mains [V]	230 \	/ac		
Frequency - Mains [Hz]	50 H	<u>z</u>		
	•			
Operating mode(s) used	Mode) 1		

(Loc	Test I	Point ge, see also photo)	Test Voltage [kV] -& Polarity	Coupling type	# of applied discharges / polarity	Discharge interval [s]
\boxtimes		nductive surface as picture below.	±4	Contact	10	4
\boxtimes	Points on non-conductive surface as indicated in the picture below.		±8	Air	10	1
\boxtimes	HCP top side.		±4	Contact	10	4
	HCP bottom side.		±4	Contact	10	1
\square	VCP right side.	-	±4	Contact	10	4
\boxtimes	VCP left side.		±4	Contact	10	4
	VCP front side	-	±4	Contact	10	1
\boxtimes	VCP rear side.		±4	Contact	10	4
Observation(s) During the test no loss of performance was observed. After the test the EUT functioned intended. No unacceptable loss of performance or data was observed.					unctioned as	

Report no.: 6018733.50 Page 35 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

5.4 Radio-frequency electromagnetic fields immunity VERDICT: N/A

During the test it is verified if the equipment under test (EUT) has sufficient immunity against radiated electromagnetic fields. Industrial electromagnetic sources, walkie-talkies, radio transmitters, television transmitters and telecommunication equipment including cellular telephones and other emitting devices can generate these fields.

Requirements

Standard	EN 55014-2			
Basic standard	EN 61000-4-3			
Port under test	Enclosure			
Frequency range	Test level	Modulation	Dwell time	Step size
80 – 1000 MHz	3 V/m	80% AM (1kHz)	≥ 0,5 s	≤ 1%
Supplementary information				

Performed tests

- enormed tests									
Test method	\boxtimes	EN 6100	0-4-3			EN 61000-4-2	20		
Test set-up	\boxtimes	Equipment on the table (0,8 m height)							
		Equipment standing on floor (0,05 0,15 m height)							
Voltage - Mains [V]	230 \	230 Vac							
Frequency Mains [Hz]	50 H	50 Hz							
Operating mode(s) used	Mode	Mode 1							
Frequency range (applied)	Antenna Polarization		Test level (applied)			lodulation (applied)	Dwell time (applied)		Remark
80 – 1000 MHz		Ħ	3 V/i	n	80%	6 AM (1kHz)	3 s		
(step size 1%)		¥	¥ 3 V/m 80% ∧M (1kHz)		3 s				
				ı				1	
Exposed side of the EUT		Front (0	')		Right	: (90°)	Ф	Top	
	\boxtimes	Rear (18	30°)	\boxtimes	Left (270°)		Bottom	·
					•			•	
Observation(s)	During the test no loss of performance was observed. After the test the EUT								
Observation(s)	functioned as intended. No unacceptable loss of performance was observed.								
Supplementary information:	<u> </u>								
<u>- application and intermiduolis</u>	_								

Report no.: 6018733.50 Page 36 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

5.5 Electrical Fast Transients immunity	VERDICT:	N/A
---	----------	-----

The EFT immunity test simulates disturbances by bursts of very short transients caused for example by switching off loads such as an AC motor or bouncing relay contacts. The transients are likely to disturb electronics but less likely to cause damage.

Requirements

Standa	ard	EN 55014-2				
Basic standard EN 61000-4-4						
Pulse characteristics 5/50 ns						
Port			Test level	Repetition frequency	Duration	
\boxtimes			± 1000 V	5 KHz	2 min. / polarity	
	☐ DC input-output power ²⁾		± 500 V	5 KHz	2 min. / polarity	
☐ Signal and Control lines ³⁾			± 500 V	5 KHz	2 min. / polarity	
1) For extra low voltage a.c ports, this testing is only applicable to ports interfacing with cables whose total length may exceed 3 m according to the manufacturer's functional specification.						

Performed tests

Voltage – Mains [V]	230 \	230 Vac				
Frequency - Mains [Hz]	50 Hz	50 Hz				
Operating mode(s) used	Mode 1					
Test Set-up	\square	Equipment standing on floor at (0,1 ± 0,01) m above ground plane				
		Equipment on the table (0,1 ± 0,01) m above ground plane				
		Artificial hand applied.				
Coupling	\boxtimes	Common mode		Other:		

Port(s) under test		Test Voltage &Polarity	Repetition Frequency	Test duration / polarity	Injection method			od
AC / DC mains powe	r input	1 kV	5 KHz	2 min	☐ CDN ☐ Clan		Clamp	
AC / DC power outpu	\C / DC power output		5 KHz			CDN	\Box	Clamp
Ethernet / LAN			5 KHz		☐ CDN ☐ Clamp			Clamp
Observation(s) During the test no loss of performance was observed. After the test the EUT functioned as intended. No unacceptable loss of performance was observed.								

Report no.: 6018733.50 Page 37 / 44

²⁾ Not applicable to battery operated appliances that cannot be connected to the mains while in use.

³⁾ Applicable only to ports interfacing with cables whose total length may exceed 3 m according to the manufacturer's functional specification.

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

The surge transient immunity test simulates the surges that are caused by over-voltages due to indirect (induced) lightning transients. The pulse is a slow transient with high-energy contents and due to its long duration may cause damage to an unprotected EUT.

Requirements

Standard	EN 55014-2				
Basic standard	EN 61000-4-5				
Pulse characteristics	1,2/50µs Voltage; 8/20µs Current				
Repetition rate	≥ 60 secs. (for eac	≥ 60 secs. (for each test level and phase angle)			
Number of pulses	5 pulses (at each p	polarity and phase a	angle)		
Port		Test level & Polarity & Coupling Phase angle			
Port		Line to Line	Line to Earth	[°]	
AC input power 1)	+ 1 kV	N/A	90		
AC input power 1)	- 1 kV	N/A	270		
1) Tests with lower voltages are not required.					

Performed tests

Voltage Mains [V]	230 Vac
Frequency - Mains [Hz]	50 Hz
Operating mode(s) used	Mode 1
Repetition rate	60 secs. (for each test level and phase angle)
Number of pulses	5 pulses (at each polarity and phase angle)

	Port(s) under test	Coupling	Test level & Polarity	Phase angle [°]	Remark			
\boxtimes	AC mains input power	Line to Neutral	+1 kV	90				
\boxtimes	AC mains input power	Line to Neutral	-1 kV	270				
	AC mains input power	Line to Earth	+2 kV	90	4			
	AC mains input power	Line to Earth	-2 k∀	270	4			
	AC mains input power	Neutral to Earth	+2 kV	90	4			
	AC mains input power	Neutral to Earth	-2 kV	270	4			
Obse	Observation(s) During the test no loss of performance was observed. After the test the EUT functioned as intended. No unacceptable loss of performance or data was observed.							
Supr	Supplementary information:							
1. T∤	1. The EUT does not include an earth port.							

Report no.: 6018733.50 Page 38 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

5.7 Injected currents (RF common mode) immunity VERDICT: N/A

During this test the immunity of the equipment for induced or conducted electromagnetic fields is checked. Fields generated by radio and other transmitters cause RF voltages in long cables like the mains network. This test reproduces these induced disturbing voltages by injecting them to the EUT via the cabling.

Requirements

Standa	ard	EN 55014-2					
Basic standard		EN 61000-4-6					
	Frequency range	Modulation	Step size	Dwell time			
	0,15 – 80 MHz	80% AM (1kHz)	≤ 1%	≥ 0,5 s			
\boxtimes	0,15 – 230 MHz	80% AM (1kHz) ≤ 1% ≥ 0,5 s					
	Port		Test I	evel, <i>U</i> o			
\boxtimes	AC input-output power 1)		3 V				
☐ DC input-output power ^{2) 3)}			1 V				
	Signal and Control lines	4)	1 V				

¹⁾ For extra low voltage a.c ports, this testing is only applicable to ports interfacing with cables whose total length may exceed 3 m according to the manufacturer's functional specification.

Performed tests

Frequency range (applied)			Modulation (applied)	Step size (applied)	
☐ 0,15 — 80 MHz	\boxtimes	0,15 – 230 MHz	80% AM (1kHz)	1%	
Voltage – Mains [V]	230 \	/ac	Frequency – Mains [Hz]	50 Hz	
Operating mode(s) used	Mode) 1			
Test set-up		Equipment standing on floor at (0,1 ± 0,01) m above ground plane.			
		Equipment on the table (0,1 ± 0,01) m above ground plane.			
	\boxtimes	Artificial hand applied.			

Port(s) under test		Test Level (applied)	Injection method	Dwell time (applied)	Remark	
AC mains power input		3 V	CDN-M2	3 s		
Observation(s) During the test no loss of performance was observed. After the test the EUT functioned as intended. No unacceptable loss of performance or data was observed.						
Supplementary information:						

Report no.: 6018733.50 Page 39 / 44

²⁾ Not applicable to battery operated appliances that cannot be connected to the mains while in use.

³⁾ Applicable to battery operated appliances that can be connected to the mains while in use, or to appliances for which the length of d.c. cables may exceed 3 m according to the manufacturer's functional specification.

⁴⁾ Applicable only to ports interfacing with cables whose total length may exceed 3 m according to the manufacturer's functional specification.

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

5.8 Power supply interruptions and dips immunity VERDICT: N/A

The purpose of the test is to verify the immunity of the equipment against voltage dips and voltage interruptions. It helps to ensure that the equipment functions properly (as expected and safely) with power supply fluctuations. Voltage dips and interruptions are caused by faults in the LV, MV, HV networks (short-circuit or ground faults).

Requirements

Standard	EN 55014-2						
Basic standard	EN 61000-4-11						
# of dips & interruptions	3 dips / interruptions for each test level and phase angle						
Interval between events	≥ 10 seconds						
Port	Test level 1)	Period (Cycles)		Performance Criteria			
		50 Hz	60 Hz				
AC input power port	U _{NOM} – 100%	0,5	0,5	C; Refer to the chapter 5.1 for details.			
AC input power port	U _{NOM} – 60%	10	12	C; Refer to the chapter 5.1 for details.			
AC input power port	U _{NOM} — 30%	25 30 C; Refer to the chapter 5.1 for details.					

¹⁾ Changes to the voltage level shall occur at a zero crossing point in the a.c. voltage waveform.

NOTE: Where the equipment has a rated voltage range the following shall apply:

- If the voltage range does not exceed 20% of the lower voltage specified for the rated voltage range. A single voltage within that range may be selected for testing.
- In all other cases, the test procedure shall be applied for both the lowest and highest voltages declared in the voltage range.

Performed tests

5\/ 1	Tamainal	Voltage dip	Duration	[cycles]	Repetion rate	Number of	Phase angle	
UNOM [VAC]	Terminal	[% U NOM]	50 Hz	60 Hz	[s]	dips per test	[[⊕]]	
230	L-N	0	0,5	1	10	3	0, 180	
230	L-N	40	10	+	10	3	0, 180	
230	L-N	70	25	1	10	3	0, 180	
Operating mode(s) used Mode 1								
Observation(s) During the test no loss of performance was observed. After the test the EUT functioned as intended. No unacceptable loss of performance was observed.								
Supplementary information:								

Report no.: 6018733.50 Page 40 / 44

6 IDENTIFICATION OF THE EQUIPMENT UNDER TEST

EUT PHOTOS

Report no.: 6018733.50 Page 41 / 44

No.250, Jiangchangsan Road, Jing`an District, Shanghai, China

TEL: +86-21-6056 7666 / FAX: +86-21-6056 7555

7 MEASUREMENT UNCERTAINTIES

The table(s) below show(s) measurement uncertainties of the EMC test set-ups. The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Conducted Emissions

The measurement uncertainty is evaluated as ± 2.26 dB.

Disturbance Power Emission

The measurement uncertainty is evaluated as ±3.34dB.

Harmonic Current Emission

The measurement uncertainty is evaluated as 0.1%.

Voltage Fluctuation and Flicker

The measurement uncertainty is evaluated as $\pm 4\%$.

Report no.: 6018733.50 Page 42 / 44

8 **USED EQUIPMENT**

Conducted Emission / SR2-H

Instrument	Manufacturer	Model No.	Serial No.	Cal. Date	Next Cal. Date
Test Receiver	R&S	ESCI7	100879	2018/10/05	2019/10/04
Artificial Mains Network	R&S	ENV4200	848411/010	2019/01/11	2020/01/10
LISN	R&S	ENV216	100092	2018/07/23	2019/07/22
Coaxial Cable	Harbour	RG-400	SR2-H	2018/08/15	2019/08/14
DEKRA-EMI system	DEKRA	Version 1.0	SR2-H	N/A	N/A

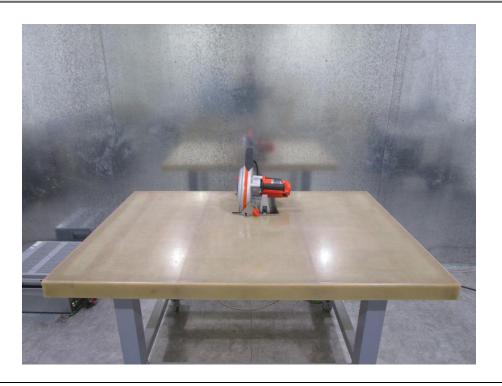
Disturbance Power Emission / SR2-H

Instrument	Manufacturer	Model No.	Serial No.	Cal. Date	Next Cal. Date
Test Receiver	R&S	ESCI7	100879	2018/10/05	2019/10/04
Absorbing Clamp	Luthi	MDS 21B	P1602169770	2019/01/29	2020/01/28
DEKRA-EMI system	DEKRA	Version 1.0	SR2-H	N/A	N/A

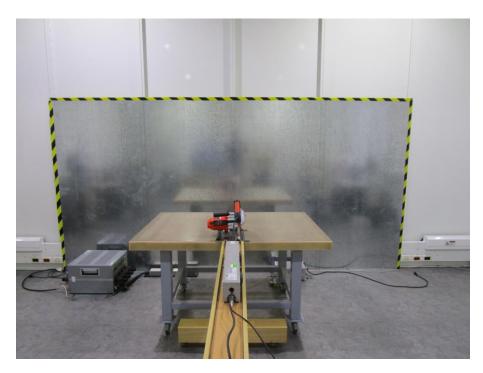
Power Harmonics / SR3-H

Instrument	Manufacturer	Model No.	Serial No.	Cal. Date	Next Cal. Date
EMC Emission Tester	EMC-Partner	HAR-1000-1P	109	2019/01/02	2020/01/01

Voltage Fluctuation and Flicker / SR3-H


Instrument	Manufacturer	Model No.	Serial No.	Cal. Date	Next Cal. Date
EMC Emission Tester	EMC-Partner	HAR-1000-1P	109	2019/01/02	2020/01/01

Report no.: 6018733.50 Page 43 / 44



9 **TEST PHOTOS**

Conducted disturbance voltage at mains terminals

Disturbance power

-----END------

Report no.: 6018733.50 Page 44 / 44